Lecture 3 Inspection and Error Messages

Zidong Mark Wang
2015 Fall

Based on material written by Gillig and McCarl; Improved upon by many previous lab instructors; Special thanks to Pei Huang.
Model Inspection

• When one has a big complicated data set containing many data calculations, one may lose touch with the exact optimization model being solved

• Thus, when setting up a model, one may need to look at individual equations and variables.
 – LIMROW and LIMCOL
 – GAMSCHK (will be discussed later)
LIMROW & LIMCOL

- LIMROW : controls the number of rows in the equation listing
- LIMCOL : controls the number of columns in the variable listing
- Default value is 3.
 - To eliminate: \texttt{OPTION LIMROW = 0;}
 \texttt{OPTION LIMCOL = 0;}
 - To expand: \texttt{OPTION LIMROW = 100; (or another number)}
 \texttt{OPTION LIMCOL = 100 ;}

- Example

```
Model transport /all/;

Option limrow = 100;
Option limcol = 100;

Solve transport using lp minimizing z;
```
Transportation Problem Illustration

Simple Network Representation

Sources

Supply s_1

Supply s_2

Destinations

Demand d_1

Demand d_2

Demand d_3

Costs c_{ij}

x_{ij}
Min Cost of shipping goods from S to D

Minimize \(c_{11}X_{11} + c_{12}X_{12} + c_{13}X_{13} + c_{21}X_{21} + c_{22}X_{22} + c_{23}X_{23} \)

Subject to:

\[
X_{11} + X_{12} + X_{13} \leq S_1 \\
X_{21} + X_{22} + X_{23} \leq S_2 \\
X_{11} + X_{21} \geq D_1 \\
X_{12} + X_{22} \geq D_2 \\
X_{13} + X_{23} \geq D_3
\]

\(X_{11}, X_{12}, X_{13}, X_{21}, X_{22}, X_{23} \geq 0 \) (non-negative)

Minimize \(\sum \sum c_{ij}X_{ij} \)

subject to \(\sum_j X_{ij} \leq S_i \)

\(\sum_i X_{ij} \geq D_j \)

\(X_{ij} \geq 0 \) for all \(i \) and \(j \)

• minimization of total cost across all possible shipment routes
• Limited outgoing shipments from each S point \(i \)
• Minimum demand constraint at each D point \(j \)
• Nonnegative shipments
<table>
<thead>
<tr>
<th></th>
<th>Seattle to New York</th>
<th>Seattle to Chicago</th>
<th>Seattle to Topeka</th>
<th>San Diego to New York</th>
<th>San Diego to Chicago</th>
<th>San Diego to Topeka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivered Cost</td>
<td>250</td>
<td>178</td>
<td>187</td>
<td>250</td>
<td>187</td>
<td>151</td>
</tr>
<tr>
<td>Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Diego</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topeka</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
Costsum..
    TotalCost
    =E= \textbf{SUM}((\textbf{Source},\textbf{Destination}),
                      \textbf{TranCost}(\textbf{Source},\textbf{Destination})*\textbf{Transport}(\textbf{Source},\textbf{Destination}));

\textbf{SupplyBal}(\textbf{Source})..
    \textbf{SUM}(\textbf{Destination}, \textbf{Transport}(\textbf{Source},\textbf{Destination}))
    =L= \textbf{Supply}(\textbf{Source}) ;

\textbf{Demandbal}(\textbf{Destination})..
    \textbf{SUM}(\textbf{Source}, \textbf{Transport}(\textbf{Source},\textbf{Destination}))
    =G= \textbf{Need}(\textbf{Destination}) ;

\textbf{Model} \textbf{Transport} /\textbf{ALL}/ ;
\textbf{OPTION} LIMROW = 100;
\textbf{OPTION} LIMCOL = 100;
\textbf{Solve} \textbf{Transport} USING LP MINIMIZING TotalCost ;
```
Transportation Problem Illustration: Equations

<table>
<thead>
<tr>
<th>Delivery Cost</th>
<th>Seattle to New York</th>
<th>Seattle to Chicago</th>
<th>Seattle to Topeka</th>
<th>San Diego to New York</th>
<th>San Diego to Chicago</th>
<th>San Diego to Topeka</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250</td>
<td>178</td>
<td>187</td>
<td>250</td>
<td>187</td>
<td>151</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>San Diego</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demand</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>Chicago</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Topeka</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>275</td>
</tr>
</tbody>
</table>

\[\text{Costsum} \ = E = \text{Total transport cost} -- \text{objective function} \]

\[\text{Costsum} \ = \text{TotalCost} - 250 \times \text{Transport}(\text{Seattle, New York}) \]

\[- 178 \times \text{Transport}(\text{Seattle, Chicago}) - 187 \times \text{Transport}(\text{Seattle, Topeka}) \]

\[- 250 \times \text{Transport}(\text{San Diego, New York}) - 187 \times \text{Transport}(\text{San Diego, Chicago}) \]

\[- 151 \times \text{Transport}(\text{San Diego, Topeka}) = E = 0 ; (\text{LHS} = 0) \]
Transportation Problem Illustration: Equations

<table>
<thead>
<tr>
<th></th>
<th>Seattle to New York</th>
<th>Seattle to Chicago</th>
<th>Seattle to Topeka</th>
<th>San Diego to New York</th>
<th>San Diego to Chicago</th>
<th>San Diego to Topeka</th>
<th>Minimize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivered Cost</td>
<td>250</td>
<td>178</td>
<td>187</td>
<td>250</td>
<td>187</td>
<td>151</td>
<td>350</td>
</tr>
<tr>
<td>Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>Seattle</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Diego</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>New York</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>Chicago</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supplybal \(\leq \) Supply limit at source plants

Supplybal(Seattle).. Transport(Seattle, New York) + Transport(Seattle, Chicago)

+ Transport(Seattle, Topeka) \(= \leq 350 \); (LHS = 0)

Supplybal(San Diego).. Transport(San Diego, New York) + Transport(San Diego, Chicago)

+ Transport(San Diego, Topeka) \(= \leq 600 \); (LHS = 0)
Transportation Problem Illustration: Equations

<table>
<thead>
<tr>
<th></th>
<th>Seattle to New York</th>
<th>Seattle to Chicago</th>
<th>Seattle to Topeka</th>
<th>San Diego to New York</th>
<th>San Diego to Chicago</th>
<th>San Diego to Topeka</th>
<th>Minimize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivered Cost</td>
<td>250</td>
<td>178</td>
<td>187</td>
<td>250</td>
<td>187</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>San Diego</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>Chicago</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Topeka</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>275</td>
</tr>
</tbody>
</table>

Demandbal = G = Demand at destinations

Demandbal(New York): \(\text{Transport(Seattle, New York)} + \text{Transport(San Diego, New York)} = G = 325; \text{LHS} = 0, \text{INFES} = 325**

Demandbal(Chicago): \(\text{Transport(Seattle, Chicago)} + \text{Transport(San Diego, Chicago)} = G = 300; \text{LHS} = 0, \text{INFES} = 300**

Demandbal(Topeka): \(\text{Transport(Seattle, Topeka)} + \text{Transport(San Diego, Topeka)} = G = 275; \text{LHS} = 0, \text{INFES} = 275**
Transportation Problem Illustration: Variables

<table>
<thead>
<tr>
<th></th>
<th>Seattle to New York</th>
<th>Seattle to Chicago</th>
<th>Seattle to Topeka</th>
<th>San Diego to New York</th>
<th>San Diego to Chicago</th>
<th>San Diego to Topeka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivered Cost</td>
<td>250</td>
<td>178</td>
<td>187</td>
<td>250</td>
<td>187</td>
<td>151</td>
</tr>
<tr>
<td>Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Diego</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>New York</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>Topeka</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>275</td>
</tr>
</tbody>
</table>

Transport Shipment quantities in cases

Transport (Seattle, New York)

-250 Costsum
1 Supplybal (Seattle)
1 Demandbal (New York)

Transport (Seattle, Chicago)

-178 Costsum
1 Supplybal (Seattle)
1 Demandbal (Chicago)

Transport (Seattle, Topeka)

-187 Costsum
1 Supplybal (Seattle)
1 Demandbal (Topeka)
Transportation Problem Illustration: Variables

<table>
<thead>
<tr>
<th>Delivered Cost</th>
<th>Seattle to New York</th>
<th>Seattle to Chicago</th>
<th>Seattle to Topeka</th>
<th>San Diego to New York</th>
<th>San Diego to Chicago</th>
<th>San Diego to Topeka</th>
<th>Minimize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250</td>
<td>178</td>
<td>187</td>
<td>250</td>
<td>187</td>
<td>151</td>
<td>350</td>
</tr>
<tr>
<td>Supply</td>
<td>Seattle</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>San Diego</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New York</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Chicago</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>300</td>
</tr>
<tr>
<td>Demand</td>
<td>Topeka</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>275</td>
</tr>
</tbody>
</table>

--- Transport Shipment quantities in cases

Transport(San Diego, New York)

(.LO, .L, .UP = 0, 0, +INF)

-250 Costsum
1 Supplybal(San Diego)
1 Demandbal(New York)

Transport(San Diego, Chicago)

(.LO, .L, .UP = 0, 0, +INF)

-187 Costsum
1 Supplybal(San Diego)
1 Demandbal(Chicago)

Transport(San Diego, Topeka)

(.LO, .L, .UP = 0, 0, +INF)

-151 Costsum
1 Supplybal(San Diego)
1 Demandbal(Topeka)

--- TotalCost Total transportation costs in dollars

TotalCost

(.LO, .L, .UP = -INF, 0, +INF)

1 Costsum
When GAMS detects errors, it inserts coded error messages inside the echo print in the *.LST file. All errors are marked with four asterisks **** at the beginning of a line.

Locate the errors

Locate the errors

Locate the errors

Locate the errors
Locate the errors

Double click on **Red Color Lines** in the process window, causes the cursor to jump to location in *.gms file where error occurs.

![GAMS IDE screenshot showing error message](image)
Locate the errors

Double click on **Black Color Lines** in the process window, then a cursor will jump to a *.lst file where the error is listed.
Concentrate on fixing the first or first few errors and ignore the others since many subsequent errors may result from previous
Common Error – Handling Sets

In every equation all subscripts (SETS) must be handled in every term. They either must be summed over, or must appear in the equation definition.

\[
\text{SupplyBal(Source)} = \sum (\text{Source, Transport(Source, Destination)}) = \text{Supply(Source)};
\]
The set Source is handled both in equation declaration \texttt{SupplyBal(Source)}.. and summation \texttt{SUM}.
Common Error – Handling Sets

--- Starting compilation
--- ERROR.GMS(52) 1 Mb 2 Errors
*** Error 149 in C:\TASANA\641CLASS_GAMS_SECTION_SPRING2003\PROGRAM\ERROR.GMS

Uncontrolled set entered as constant

49 Costsum..
50 TotalCost
51 =E= SUM((Destination),
52 TranCost(Source,Destination)*Transport(Source,Destination))

**** $149 $149

**** 149 Uncontrolled set entered as constant

Source is not operated over in a sum or the .. specification.
Common Error – Floating entry

--- Starting compilation
--- TRNSPORT.GMS(39) 1 Mb 1 Error
*** Error 225 in C:\TASANA\641CLASS\PROGRAM\TRNSPORT.GMS
Floating entry ignored

<table>
<thead>
<tr>
<th>35</th>
<th>TABLE Distance(Source,Destination)</th>
<th>Distance in thousands of miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>"New York"</td>
<td>Chicago</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>39</td>
<td>Seattle</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>"San Diego"</td>
<td>2.5</td>
</tr>
</tbody>
</table>

We have not aligned the data under a column set name so GAMS does not know which data column a number goes with.
Common Error – Dimension inconsistency

--- Starting compilation
--- ERROR.GMS(54) 1 Mb 2 Errors
*** Error 171 in C:\TASANA\641CLASS_GAMS_SECTION_SPRING2003\PROGRAM\ERROR.GMS
 Domain violation for set
*** Error 148 in C:\TASANA\641CLASS_GAMS SECTION SPRING2003\PROGRAM\ERROR.GMS
 Dimension different – The symbol is referenced with more/less indices as declared

POSITIVE VARIABLE
 Transport(Source, Destination) Shipment quantities in cases;

49 Costsum..
50 TotalCost
51 =E= SUM((Source, Destination),
52 TranCost(Source, Destination)*Transport(Source, Destination))
53 SupplyBal(Source).
54 SUM(Destination, Transport(Destination))

**** $171,148
**** 148 Dimension different – The symbol is referenced with more/less indices as declared
**** 171 Domain violation for set
Common Error – Redefine

--- Starting compilation
--- TRNSPORT_ERR.GMS(44) 1 Mb 1 Error
*** Error 195 in C:\TASANA\641CLASS\PROGRAM\TRNSPORT_ERR.GMS
Symbol redefined with a different type

33 PARAMETER
34 TranCost(Source, Destination) Transport cost in cost
35 Trancost(Source, Destination)
36 = Loadcost + PrMileCst * Distance(Source, Desti
37
38 VARIABLE
39 TotalCost Total transportation
40 POSITIVE VARIABLE
41 Transport(Source, Destination) Shipment quantities
42
43 EQUATIONS
44 Trancost

**** $195
**** 195 Symbol redefined with a different type
Common Errors – Domain violation

--- Starting compilation
--- TRNSPORT_ERR.GMS(15) 1 Mb 1 Error
*** Error 170 in C:\TASANA\641CLASS\PROGRAM\TRNSPORT_ERR.GMS
Domain violation for element

1 SETS
2 Source Canning plants
3 / Seattle Canning plant in Seattle
4
5
6 Destination Markets
7 / "New York" Demand in New York
8 Chicago Demand in Chicago
9 Topeka Demand in Topeka

10
11
12 PARAMETERS
13 Supply(Source) Supply at each source plant in cases
14 / Seattle 350
15 "San Diego" 600/

**** $170
**** 170 Domain violation for element

We forgot to include “San Diego” element in Source set, but this “San Diego” is used later in the PARAMETERS
Common Errors – Domain violation

--- Starting compilation
--- ERROR.GMS(21) 1 Mb 1 Error
*** Error 170 in C:\TASANA\641CLASS_GAMS_SECTION_SPRING2003\PROGRAM\ERROR.GMS

Domain violation for element

12
13 SETS
14 Source canning plants /Seattle, "San Diego" /
15 Destination markets /"New Yor", Chicago, Topeka /
16
17 PARAMETERS
18 Supply(Source) Supply at each source plant in cases
19 /seattle 350, "san diego" 600 /
20 Need(Destination) Amount needed at each market destination in cases
21 /"new york" 325, chicago 300, topeka 275 /

**** $170
**** 170 Domain violation for element

We misspelled “New Yor” element of Destination set.
Common Errors – Mismatched parentheses

--- Starting compilation
--- TRNSPORT_ERR.GMS(51) 1 Mb 1 Error
*** Error 408 in C:\TASANA\641CLASS\PROGRAM\TRNSPORT_ERR.GMS
Too many),] or }

(A)

48 Costsum..
49 TotalCost
50 =E= SUM((Source, Destination),
51 Trancost(Source, Destination)*Transport(Source, Destination)));

*** 408 Too many),] or }

--- Starting compilation
--- TRNSPORT_ERR.GMS(51) 1 Mb 1 Error
*** Error 8 in C:\TASANA\641CLASS\PROGRAM\TRNSPORT_ERR.GMS
')' expected

(B)

48 Costsum..
49 TotalCost
50 =E= SUM((Source, Destination),
51 Trancost(Source, Destination)*Transport(Source, Destination));

**** 8 ')' expected
CostSum equation contains nonlinear terms beyond the capacity of the solver being used. In SOLVE statement, we define to solve this problem as a LP problem.

--- Starting compilation
--- TRNSPORT_ERR.GMS(68) 1 Mb 2 Errors
*** Error 56 in C:\TASAN\641CLASS\PROGRAM\TRNSPORT_ERR.GMS
Endogenous operands for * not allowed in linear models

38 VARIABLE
39 TotalCost Total transportation costs in dol
40 POSITIVE VARIABLE
41 Transport(Source,Destinaton) Shipment quantities in cases;
48 CostSum..
49 **TotalCost*SUM((Source,Destinaton) | Transport(Source,Destinaton))** =E= 0 ;
73 SOLVE Transport USING LP MINIMIZING TotalCost ;
**** $56,256
**** 56 Endogenous operands for * not allowed in linear models
**** 256 Error(s) in analyzing solve statement. More detail appears
**** Below the solve statement above
**** The following LP errors were detected in model Transport:
**** 56 in equation CostSum .. VAR operands for *

Common Errors - Entering improper nonlinear expressions
We declared a TransCost as a parameter but we did not declare numerical values to the TransCost and it is used in the CostSum equation.
A CostSum equation is used but it has not been declared.
Common Errors – Insufficient semi colon

--- Starting compilation
--- TRNSPORT_ERR.GMS(48) 1 Mb 1 Error
*** Error 96 in C:\TASANA\641CLASS\PROGRAM\TRNSPORT_ERR.GMS
Blank needed between identifier and text
(-or- illegal character in identifier)
(-or- check for missing ';' on previous line)

43 EQUATIONS
44 CostSum Total transport cost -- objecti
45 SupplyBal(Source) Supply limit at source plants
46 DemandBal(Destination) Demand at destinations
47
48 CostSum.. ;
**** 96 Blank needed between identifier and text
**** (-or- illegal character in identifier)
**** (-or- check for missing ';' on previous line)

We forgot to terminate the EQUATIONS statement with the semi colon
The algebraic structure of equations must be specified by using .. notation. Here we omitted the “..” in CostSum equation.
Common Errors – Unknown symbol

--- Starting compilation
--- ERROR.GMS(62) 1 Mb 3 Errors
*** Error 140 in C:\TASANA\641CLASS_GAMS_SECTION_SPRING2003\PROGRAM\ERROR.GMS
 Unknown symbol

59 Model Tranpor /ALL/ ;
60 OPTION LIMROW = 100;
61 OPTION LIMCOL = 100;
62 Solve Tranport USING LP MINIMIZING TotalCost ;
**** $140,241 $257
**** 140 Unknown symbol
**** 241 Model has not been defined
**** 257 Solve statement not checked because of previous errors

We named a model “Tranpor”, but then later we solve the model called “Transport”. Obviously, misspelled in the MODEL statement.
Questions?