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CHAPTER XIV:  RISK MODELING and Stochastic Programming  
 

 Risk is often cited as a factor which influences decisions.  This chapter reviews methods for 

incorporating risk and risk reactions into mathematical programming models.1   

 Stochastic mathematical programming models depict the risk inherent in model parameters and 

possibly the decision maker’s response to that risk.  Risk considerations are usually incorporated 

assuming that the parameter probability distribution (i.e., the risk) is known with certainty.2  Usually, the 

task becomes one of adequately representing these distributions as well as the decision makers response 

to parameter risk.  

 The question arises:  Why use stochastic models, why not just solve the model under all 

combinations of the risky parameters and use the resultant plans?  Such an approach is tempting, yet 

suffers from problems of dimensionality and certainty.  The dimensionality problem is manifest in the 

number of possible solutions under the alternative settings for the uncertain parameters (i.e., five possible 

values for each of three parameters would lead to 35 = 243 possible model specifications).  Often, there 

are more possible combinations of values of the risky parameters than can practically be enumerated.  

Furthermore, these enumerated plans suffer from a certainty problem.  Every LP parameter is assumed 

known with perfect knowledge.  Consequently, solutions reflect "certain" knowledge of the parameter 

values imposed.  Thus, when one solves many models one gets many plans and the question remains 

which plan should be used. 

 Usually, it is desirable to formulate a stochastic model to generate a robust solution which yields 

satisfactory results across the full distribution of parameter values.  The risk modeling techniques 

discussed below are designed to yield such a plan.  The "optimal" plan for a stochastic model generally 

does not place the decision maker in the best possible position for all (or maybe even any) possible 

                                                           
1      The risk modeling problem is a form of the multiple objective programming problem so that there 

are parallels between the material here and that in the multi-objective chapter. 

2      It should be noted that in this chapter risk and uncertainty are used interchangeably in a manner 
not consistent with some discussions in the literature where a distinction is made involving the 
degree to which a decision maker knows the parameter probability distributions(Knight). Any 
time we discuss risk or uncertainty we assume that the probability distribution is known. 
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parameter combinations(commonly called states of nature or events), but rather establishes a robust 

position across the set of possible events. 

14.1 Decision Making and Recourse  

 Many different stochastic programming formulations have been posed for risk problems.  An 

important assumption involves the potential decision maker reaction to information.  The most 

fundamental distinction is between cases where:  

 
 1) all decisions must be made now with the uncertain outcomes resolved later, after all 

random draws from the distribution have been taken, and  
 
 2) some decisions are made now, then later some uncertainties are resolved followed by 

other decisions yet later.   
 

 These two settings are illustrated as follows.  In the first case, all decisions are made then events 

occur and outcomes are realized.  This is akin to a situation where one invests now and then discovers the 

returns to the investment at years end without any intermediate buying or selling decisions.  In the second 

case, one makes some decisions now, gets some information and makes subsequent decisions.  Thus, one 

might invest at the beginning of the year based on a year long consideration of returns, but could sell and 

buy during the year depending on changes in stock prices.  

 The main distinction is that under the first situation decisions are made before any uncertainty is 

resolved and no decisions are made after any of the uncertainty is resolved.  In the second situation, 

decisions are made sequentially with some decisions made conditional upon outcomes that were subject 

to a probability distribution at the beginning of the time period. 

 These two frameworks lead to two very different types of risk programming models.  The first 

type of model is most common and is generally called a stochastic programming model without recourse.  

The second type of model was originally developed by Dantzig in the early 50's and falls into the class of 

stochastic programming with recourse models.  These approaches are discussed separately, although 

many of the “without recourse” techniques can be used when dealing with the “with recourse” problems. 
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14.2 An Aside:  Discounting Coefficients  

 Before discussing formal modeling approaches, first let us consider a common, simple approach 

used in virtually all "risk free" linear programming studies.  Suppose a parameter is distributed according 

to some probability distribution, then a naive risk specification would simply use the mean.  However, 

one could also use conservative price estimates (i.e., a price that one feels will be exceeded 80% of the 

time).  

 This reveals a common approach to risk.  Namely, data for LP models are virtually never certain.  

Conservative estimates are frequently used, in turn producing conservative plans (see McCarl et al., for an 

example of treatment of time available).  Objective function revenue and resource availability coefficients 

may be deflated while cost coefficients are inflated.  Technical coefficients and right hand sides may be 

treated similarly.  The main difficulty with a conservative estimate based approach is the resultant 

probability of the solution.  Conservative estimates for all parameters can imply an extremely unlikely 

event (ie what is the chance that resource availability in every period will be at the low end of the 

probability distribution at the same time as all prices) and cause the model to take on an overly 

conservative choice of the decision variables. 

14.3 Stochastic Programming without Recourse   

 Risk may arise in the objective function coefficients, technical coefficients or right hand sides 

separately or collectively.  Different modeling approaches have arisen with respect to each of these 

possibilities and we will cover each separately.   

14.3.1 Objective Function Coefficient Risk  

 Several objective function coefficient risk models have been posed.  This section reviews these.  

First, however, some statistical background on distributions of linear sums is necessary.  

 Given a linear objective function  

 

where X1, X2 are decision variables and c1 , c2 are uncertain parameters distributed with means 

and as well as variances s11 , s22, and covariance s12; then Z is distributed with mean 

 

2211 XcXcZ 

1c 2c
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and variance 

 

In matrix terms the mean and variance of Z are 

 

where in the two by two case 

 

Defining terms 
 
sii is the variance of the objective function coefficient of Xi, which is calculated using the formula  

 sik = ∑ (cik- where cik is the kth observation on the objective value of Xi and N is the 
number of observations, assuming an equally likely probability (1/N) of occurrence.3  

 
sij for i  j is the covariance of the objective function coefficients between ci and cj, calculated by the 

formula sij = ∑ (cik- )(cjk- )/N.  Note sij = sji. 
 

 is the mean value of the objective function coefficient ci, calculated by ∑cik/N. (Assuming 
an equally likely probability of occurrence.)  

 
14.3.1.1 Mean-Variance Analysis  
 

 The above expressions define the mean and variance of a LP objective function with risky c 

parameters.  Markowitz exploited this in the original mean-variance (or EV) portfolio choice formulation.  

 The portfolio choice problem involves development of an "optimal" investment strategy.  The 

variables indicate the amount of funds invested in each risky investment subject to a total funds 

constraint.  Markowitz motivated the formulation by observing that investors only place a portion, not all, 

of their funds in the highest-yielding investment.  This, he argued, indicated that a LP formulation is 

inappropriate since such an LP would reflect investment of all funds in the highest yielding alternative 

(since there is a single constraint).  This divergence between observed and modeled behavior led 

Markowitz to include a variance term resulting in the so-called expected value variance (EV) model. 

                                                           
3      One could also use the divisor N-1 when working with a sample. 
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 ****Freund (1956) developed a related model, apparently independently, which has become the 

most commonly used EV model.  The portfolio context of Freund’s formulation is 

 

 Here the objective function maximizes expected income  less a "risk aversion coefficient" (

 times the variance of total income (X'SX).  The model assumes that decision makers will trade 

expected income for reduced variance.  

 In this context Markowitz discussed the E-V efficient frontier which is the locus of points 

exhibiting minimum variance for a given expected income, and/or maximum expected income for a given 

variance of income (Figure 14.1 gives the frontier for the example below).  Such points are efficient for a 

decision maker with positive preference for income, negative preference for variance and indifference to 

other factors. 

 The E-V problem can handle problem contexts broader than the portfolio example.  A general  

formulation in the resource allocation context is  

 

 is average returns from producing X and S gives the associated variance-covariance matrix. 

14.3.1.1.1 Example  

 Assume an investor wishes to develop a stock portfolio given the stock annual returns 

information shown in Table 14.1, 500 dollars to invest and prices of stock one $22.00, stock two $30.00, 

stock three $28.00 and stock four $26.00.  

  The first stage in model application is to compute average returns and the variance-covariance 

matrix of total net returns.  The mean returns and variance - covariance matrix are shown in Table 14.2.  

In turn the objective function is  
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This objective function is maximized subject to a constraint on investable funds:  

50026283022 4321  XXXX  

and non-negativity conditions on the variables. 

 Empirically, this problem is solved for various ɸ values as implemented in the GAMS 

instructions in Table 14.3 or in the EVPORTFO file.  The solutions, at selected values of ɸ, are shown in 

Table 14.4, while Figure 14.1 gives the efficient frontier.  

 The model yields the profit maximizing solution (X1=X2=X4=0,X3=17.86) for low risk aversion 

parameters (ɸ < 0.0005).  As the risk aversion parameter increases, then X2 comes into the solution.  The 

simultaneous use of X2 and X3 coupled with their negative covariance reduces the variance of total 

returns.  This pattern continues as ɸ increases.  For example, when ɸ equals 0.012 expected returns have 

fallen by $17 or 11%, while the standard deviation of total returns has fallen by $117 or 80%.  For yet 

higher values of the risk aversion parameter, investment in X1 increases, then later X4 is added.    

 Three other aspects of these results are worth noting.  First, the shadow price on investable capital 

continually decreases as the risk aversion parameter (ɸ) increases.  This reflects an increasing risk 

discount as risk aversion increases.  Second, solutions are reported only for selected values of ɸ.  

However, any change in ɸ leads to a different solution and an infinite number of alternative ɸ's are 

possible; e.g., all solutions between ɸ values of 0.0005 and 0.0075 are convex combinations of those two 
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solutions.  Third, when ɸ becomes sufficiently large, the model does not use all its resources.  In this 

particular case, when ɸ exceeds 2.5, not all funds are invested.  

14.3.1.1.2 Markowitz's E-V Formulation  

 Markowitz's original formulation of the E-V problem minimized variance subject to a given level 

of expected income as in the multi-objective programming lexicographic formulation.   

 Algebraically, this model is  

0

..







X

bAX

XCts

SXXMin


 

where λ is parameterized over the relevant part of the range of possible expected incomes i.e. from the 

lowest acceptable to the LP maximum.  

14.3.1.1.3 Formulation Choice  

 Markowitz's (1959) and Freund's (1956) formulations yield identical efficient frontiers; however, 

we favor Freund's (1956) formulation (a weighted multi-objective tradeoff model) due to a perceived 

incompatibility of the Markowitz formulation with model use as argued in the multi-objective chapter.  

Briefly, models are usually formulated for comparative statics analysis of a related series of problems.  

This type of analysis involves changes in the S, , A and b parameters.  In such an analysis, we feel it is 

not desirable to give alternative efficient frontiers; rather, we feel it is desirable to give specific plans (i.e., 

X variable values) for the S, , A and b settings.  Using the above E-V models one would first need to 

select either a numerical value for ɸ or one for λ.  A value of ɸ so adopted is largely a function of the 

decision makers' preference between income and risk (see Freund (1956) or Bussey for theoretical  

development of this point).  The value of λ adopted will be a function of both the risk-income tradeoff  

and the values of S, A, and b.  Thus, the attainability of a given choice λ would change with  

alterations in these parameters.  On the other hand, ɸ expresses a "pure" measure of the risk-tradeoff and 

is more likely to be relevant for different parameter values.  Thus, we prefer the Freund (1956) 

formulation.  

14.3.1.1.4 Characteristics of E-V Model Optimal Solutions  

C

C

,C
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 Properties of optimal E-V solutions may be examined via the Kuhn-Tucker conditions.  Given  

the problem 
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Its Lagrangian function is  
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and the Kuhn-Tucker conditions are  
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where µ is the vector of dual variables (Lagrangian multipliers) associated with the primal constraint 

AX≤b.  

 A cursory examination of these conditions indicates two things.  First, the solution permits more 

variables to be nonzero than would a LP basic solution.  This occurs since variables can be nonzero to 

satisfy the n potential conditions = 0 and the m conditions where AX = b or .  Thus, the 

solution can have more nonzero variables than constraints.  Second, the equation relates resource  

 

cost with marginal revenue  and a marginal cost of bearing risk (-2 ɸ X'S).  Consequently, the 

optimal shadow prices are risk adjusted as are the optimal decision variable values. 

14.3.1.1.5 E-V Model Use - Theoretical Concerns  

 Use of the E-V model has been theoretically controversial.  Expected utility theory (von 

Neumann and Morgenstern) provides the principal theoretical basis for choice under uncertainty.  Debate 

has raged, virtually since the introduction of E-V analysis, on the conditions under which an E-V model 

makes choices equivalent to expected utility maximization.  Today the general agreement is that 

maximizing the E-V problem is equivalent to maximizing expected utility when one of two conditions 

X / 0
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hold: 1) the underlying income distribution is normal - which requires a normal distribution of the cj and 

the utility function is exponential (Freund, 1956; Bussey)4, and 2) the underlying distributions satisfy 

Meyer's location and scale restrictions.  In addition, Tsiang (1972, 1974) has shown that E-V analysis 

provides an acceptable approximation of the expected utility choices when the risk taken is small relative 

to total initial wealth.  The E-V frontier has also been argued to be appropriate under quadratic utility 

(Tobin).  There have also been empirical studies (Levy and Markowitz; Kroll, et al.; and Reid and Tew) 

wherein the closeness of E-V to expected utility maximizing choices has been shown.   

14.3.1.1.6 Specification of the Risk Aversion Parameter  

 E-V models need numerical risk aversion parameters (ɸ).  A number of approaches have been 

used for parameter specification.  First, one may avoid specifying a value and derive the efficient frontier.  

This involves solving for many possible risk aversion parameters.  Second, one may derive the efficient 

frontier and present it to a decision maker who picks an acceptable point (ideally, where his utility 

function and the E-V frontier are tangent) which in turn identifies a specific risk aversion parameter 

(Candler and Boeljhe).  Third, one may assume that the E-V rule was used by decision makers in 

generating historical choices, and can fit the risk aversion parameter as equal to the difference between 

marginal revenue and marginal cost of resources, divided by the appropriate marginal variance (Weins).  

Fourth, one may estimate a risk aversion parameter such that the difference between observed behavior 

and the model solution is minimized (as in Brink and McCarl (1979) or Hazell et al. (1983)).  Fifth, one 

may subjectively elicit a risk aversion parameter (see Anderson, et al. for details) and in turn fit it into the 

objective function (i.e., given a Pratt risk aversion coefficient and assuming exponential utility implies the 

E-V ɸ equals 1/2 the Pratt risk aversion coefficient [Freund, 1956 or Bussey]).  Sixth, one may transform 

a risk aversion coefficient from another study or develop one based on probabilistic assumptions (McCarl 

and Bessler).  

 The E-V model has a long history.  The earliest application appears to be Freund's (1956). Later, 

Heady and Candler; McFarquhar; and Stovall all discussed possible uses of this methodology.  A sample 
                                                           
4      Normality probably validates a larger class of utility functions but only the exponential case has 

been worked out. 
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of applications includes those of Brainard and Cooper; Lin, et al.; and Wiens.  In addition, numerous 

references can be found in Boisvert and McCarl; Robinson and Brake; and Barry.  

14.3.1.2 A Linear Approximation - MOTAD  

 The E-V model yields a quadratic programming problem.  Such problems traditionally have been 

harder to solve than linear programs (although McCarl and Onal argue this is no longer true).  Several LP 

approximations have evolved (Hazell, 1971; Thomas et al; Chen and Baker; and others as reviewed in 

McCarl and Tice).  Only Hazell's MOTAD is discussed here due to its extensive use.   

 The acronym MOTAD refers to Minimization of Total Absolute Deviations.  In the MOTAD 

model, absolute deviation is the risk measure.  Thus, the MOTAD model depicts tradeoffs between 

expected income and the absolute deviation of income.  Minimization of absolute values is discussed in 

the nonlinear approximations chapter.  Briefly reviewing, absolute value may be minimized by 

constraining the terms whose absolute value is to be minimized (Dk) equal to the difference of two 

non-negative variables ( Dk = dk
+ - dk

- ) and in turn minimizing the sum of the new variables ∑ ( dk
+ + dk

-).  

Hazell(1971) used this formulation in developing the MOTAD model.5  

 Formally, the total absolute deviation of income from mean income under the kth state of nature 

(Dk) is 














 jj

j
jkj

j
k XcXcD  

where ckj is the per unit net return to Xj under the kth state of nature and  is the mean. 

 Since both terms involve Xj and sum over the same index, this can be rewritten as 

  jjkj
j

k XccD   

 Total absolute deviation (TAD) is the sum of Dk across the states of nature.  Now introducing 

deviation variables to depict positive and negative deviations we get 

 

                                                           
5      The approach was suggested in Markowitz (1959, p. 187). 

jc
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 Then adding the sum of the deviation variables to the objective function the MOTAD model 

maximizes expected net returns less a risk aversion coefficient (Ψ) times the measure of absolute 

deviation.  The final MOTAD formulation is 
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where dk
+ is the positive deviation of the kth income occurrence from mean income and dk

- is the 

associated negative deviation.6  

 There have been a number of additional developments regarding the MOTAD formulation.   

Hazell formulated a model considering only negative deviations from the mean, ignoring positive  

deviations.  This formulation is:  
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However, Hazell notes that when the deviations are taken from the mean, the solution to this problem is 

equivalent to the total absolute value minimization where due to the symmetry of the deviations.  

The negative deviations only model is the more commonly used MOTAD formulation (for example, see 

Brink and McCarl).  

 Also, Hazell (1971) reviews Fisher's development which shows that the standard error of a 

normally distributed population can be estimated given sample size N, by multiplying mean absolute 

                                                           
6      Note this formulation approach can be used within an E-V framework if one squares d+ and d- in 

the objective function. 

 2
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deviation (MAD), total absolute deviation (TAD), or total negative deviation (TND) by appropriate 

constraints.  Thus, 

        TND
NN

TAD
NNN

TAD

N

N
MAD

N

N
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121212 











  

where = 22/7 or 3.14176.  

 This transformation is commonly used in MOTAD formulations.  A formulation incorporates 

such as 
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14.3.1.2.1 Example  

 This example uses the same data as in the E-V Portfolio example.  Deviations from the means  

(ckj  for the stocks are shown in Table 14.5.  The MOTAD formulation is given in Table 14.6.  The 

equivalent GAMS statement is called MOTADPOR. 

 Here  is the constant which approximates standard error from the empirical value of TND as 

discussed above.  This problem is solved for over a range of values for γ.  The associated solutions are 

reported in Table 14.7 and contain information on investment in the nonzero Xj's, unused funds, mean 

absolute deviation, and the approximation of the standard error.  Also, the true variance and standard error 

are calculated from the solution values and the original data.  Note the approximate nature of the Fisher 

standard error formula.  For example, the approximated standard error at the first risk aversion range is 

161.4, but the actual standard error is 140.4.  The approximation initially overstates the true standard 

error, but later becomes quite close.  The E-V and MOTAD frontiers correspond closely (see Figure 

14.2).  However, this is not adequate proof that the solutions will always be close (see Thomson and 



)c j
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Hazell for a comparison between the methods). 

14.3.1.2.2 Comments on MOTAD  

 Many of the E-V model comments are appropriate here and will not be repeated.  However, a 

number of other comments are in order.  First, a cursory examination of the MOTAD model might lead 

one to conclude covariance is ignored.  This is not so.  The deviation equations add across all the 

variables, allowing negative deviation in one variable to cancel positive deviation in another.  Thus, in 

minimizing total absolute deviation the model has an incentive to "diversify", taking into account 

covariance.  

 Second, the equivalence of the total negative and total absolute deviation formulations depends 

critically upon deviation symmetry.  Symmetry will occur whenever the deviations are taken from the 

mean.  This, however, implies that the mean is the value expected for each observation.  This may not 

always be the case.  When the value expected is not the mean, then moving averages or other expectation 

models should be used instead of the mean (see Brink and McCarl, or Young).  In such cases, the 

deviations are generally non-symmetric and consideration must be given to an appropriate measure of 

risk.  For example, Brink and McCarl use a mean negative deviation formulation with a moving average 

expectation.   

 Third, most MOTAD applications use approximated standard errors as a measure of risk.  When 

using such a measure, the risk aversion parameters can be interpreted as the number of standard errors one 

wishes to discount income.  Coupling this with a normality assumption permits one to associate a 

confidence limit with the risk aversion parameter.  For example, a risk aversion parameter equal to one 

means that level of income which occurs at one standard error below the mean is maximized.  Assuming 

normality, this level of income is 84% sure to occur. 

 Fourth, one must have empirical values for the risk aversion parameter.  All the E-V approaches 

are applicable to its discovery.  The most common approach with MOTAD models has been based on 

observed behavior.  The procedure has been to:  a) take a vector of observed solution variables, (i.e. 

acreages); b) parameterize the risk aversion coefficient in small steps (e.g., 0.25) from 0 to 2.5, at each 

point computing a measure of the difference between the model solution and observed behavior; and c) 
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select the risk aversion parameter value for which the smallest dispersion is found between the model 

solution values and the observed values (for examples see Hazell et al.; Brink and McCarl; Simmons and 

Pomareda; or Nieuwoudt, et al.).  

 Fifth, the MOTAD model does not have a general direct relationship to a theoretical utility 

function.  Some authors have discovered special cases under which there is a link (see Johnson and 

Boeljhe(1981,1983) and their subsequent exchange with Buccola).  Largely, the MOTAD model has been 

presented as an approximation to the E-V model.  However, with the advances in nonlinear programming 

algorithms the approximation motivation is largely gone (McCarl and Onal), but MOTAD may have 

application to non-normal cases (Thomson and Hazell).  

 Sixth, McCarl and Bessler derive a link between the E-standard error and E-V risk aversion  

parameters as follows:  

 Consider the models 
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 The first order conditions assuming X is nonzero are 
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 For these two solutions to be identical in terms of X and �, then 
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Thus, the E-V risk aversion coefficient will equal the E-standard error model risk aversion coefficient 

divided by twice the standard error.  This explains why E-V risk aversion coefficients are usually very 

small (i.e., an E-standard error risk aversion coefficient usually ranges from 0 - 3 which implies when the 

standard error of income is $10,000 the E-V risk aversion coefficient range of 0 - .000015).  

Unfortunately, since is a function of which depends on X, this condition must hold ex post and 

cannot be imposed a priori.  However, one can develop an approximate a priori relationship between the 

risk aversion parameters given an estimate of the standard error.  

 The seventh and final comment regards model sensitivity.  Schurle and Erven show that several 
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plans with very different solutions can be feasible and close to the plans on the efficient frontier.  Both 

results place doubt on strict adherence to the efficient frontier as a norm for decision making.  (Actually 

the issue of near optimal solutions is much broader than just its role in risk models.)  The MOTAD model 

has been rather widely used.  Early uses were by Hazell (1971); Hazell and Scandizzo; Hazell et al. 

(1983); Simmons and Pomareda; and Nieuwoudt, et al.  In the late 1970's the model saw much use.  

Articles from 1979 through the mid 1980s in just the American Journal of Agricultural Economics 

include Gebremeskel and Shumway; Schurle and Erven; Pomareda and Samayoa; Mapp, et al.; Apland, et 

al. (1980); and Jabara and Thompson.  Boisvert and McCarl provide a recent review.  

14.3.1.3 Towards A Unified Model  

 The E-V and MOTAD models evolved before many software developments.  As a consequence, 

the models were formulated to be easily solved with 1960's and 70's software.  A more extensive unified 

model formulation is possible today.  The E-standard error form of this model is as follows 
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 In this model the resource constraints continue to appear.  But we introduce a new 

variable (Inck) which is income under state of nature k.  This is equated with income arising under the kth 

state of nature.  In turn, a variable is entered for average income  which is equated to the 

probabilities (pk) times the income levels.  This variable appears in the objective function reflecting 

expected income maximization.  Finally, deviations between the average and state of nature dependent 

)Inc(
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income levels are treated in deviation constraints where dk
+ indicates income above the average level 

whereas dk
- indicates shortfalls.  The objective function is then modified to include the probabilities and 

deviation variables.  Several possible objective function formulations are possible.  The objective function 

formulation above is E-standard error without approximation.  Note that the term in parentheses contains 

the summed, probabilistically weighted, squared deviations from the mean and is by definition equal to 

the variance.  In turn, the square root of this term is the standard deviation and � would be a risk aversion 

parameter which would range between zero and 2.5 in most circumstances (as explained in the MOTAD 

section). 

 This objective function can also be reformulated to be equivalent to either the MOTAD or E-V 

cases.  Namely, in the E-V case if we drop the 0.5 exponent then the bracketed term is variance and the 

model would be E-V.  Similarly, if we drop the 0.5 exponent and do not square the deviation variables 

then a MOTAD model arises. 

 This unifying framework shows how the various models are related and indicates that covariance 

is considered in any of the models.  An example is not presented here although the files UNIFY, EV2 and 

MOTAD2 give GAMS implementations of the unified E-standard error, E-V and MOTAD versions.  The 

resultant solutions are identical to the solution for E-V and MOTAD examples and are thus not discussed 

further.   

14.3.1.4 Safety First  

 Roy posed a different approach to handling objective function uncertainty.  This approach, the 

Safety First model, assumes that decision makers will choose plans to first assure a given safety level for 

income.  The formulation arises as follows: assume the model income level under all k states of nature    

(∑ckj Xj ) must exceed the safety level (S).  This can be assured by entering the constraints  
kallforSXc jkj

j
  

 

The overall problem then becomes 
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where S is the safety level. 

14.3.1.4.1 Example  

 A formulation using the data from the E-V example and a safety level of S is given in Table 14.8 

and a GAMS implementation is in the file SAFETY.  This example was solved for safety levels ranging 

from -$100 to +$50.  The solution (Table 14.9) at S = $100 gives the profit maximizing linear 

programming solution.  As the safety level is increased the solutions reflect a diversification between X3 

and X2.  These solutions exhibit the same sort of behavior as in the previous examples.  As the safety 

level increases a more diversified solution arises with an accompanying reduction in risk and a decrease 

in expected value.  For example at S = $50 the mean has dropped from $148.00 to $135.00, but the 

standard error is cut by more than two-thirds.   

14.3.1.4.2 Comments  

 The safety first model has not been extensively used empirically although Target MOTAD as 

discussed in the next section is a more frequently used extension.  However, the Safety First model is 

popular as an analytical model in characterizing decision making.  For a review and more extensive 

discussion see Barry. 

14.3.1.5 Target MOTAD  
 The Target MOTAD formulation developed by Tauer, incorporates a safety level of income while  
 
also allowing negative deviations from that safety level.  Given a target level of T, the formulation is 
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 All definitions are as above except is the probability of the kth state of nature; T is the target 

income level (somewhat analogous to S in the safety first model); the variable Devk is the negative 

deviation of income, allowing income under the kth state of nature to fall below target income; and � is 

the maximum average income shortfall permitted.  The equation containing T gives the relationship 

between income under the kth state of nature and a target income level.  The variable Devk is non-zero if 

the kth income result falls below T.  The constraint with the right hand side of λ limits the average 

shortfall.  Thus, the Target MOTAD model has two parameters relating to risk (T and λ) which must be 

specified.  These, in turn, can be parameterized to yield different risk solutions.  

14.3.1.5.1 Example  

 Using the data from the earlier examples and assuming each state of nature is equally probable 

(Pk = 1/10) yields the formulation given in Table 14.10 and the GAMS formulation is in the file 

TARGET.  

 The Target MOTAD example was solved with a safety level of $120.00 with the allowable 

deviation from the safety level varied from allowing as much as $120.00 average deviation to as little as 

$3.60.  The solution behavior (Table 14.11) again largely mirrors that observed in the prior examples.  

Namely, when a large deviation is allowed, the profit maximizing solution is found, but as the allowable 

deviation gets smaller, then X2 enters and then finally X1.  Again a sacrifice in expected income yields 

less risk. 

14.3.1.5.2 Comments  

 Target MOTAD has not been applied as widely as other risk programming models.  However, it 

is consistent with second degree stochastic dominance (Tauer).  Use of Target MOTAD requires 

specification of two parameters, T and �.  No attempt has been made to determine consistency between a 

kp
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T, λ choice and the Arrow-Pratt measure of risk aversion.  Nor is there theory on how to specify T and λ.  

The target MOTAD and original MOTAD models can be related.  If one makes λ a variable with a cost in 

the objective function and makes the target level a variable equal to expected income, this becomes the 

MOTAD model. 

 Another thing worth noting is that the set of Target MOTAD solutions are continuous so that 

there is an infinite number of solutions.  In the example, any target deviation between $24.00 and $12.00 

would be a unique solution and would be a convex combination of the two tabled solutions. 

 McCamley and Kliebenstein outline a strategy for generating all target MOTAD solutions, but it 

is still impossible to relate these solutions to more conventional measures of risk preferences. 

 Target MOTAD has been used in a number of contexts.  Zimet and Spreen formulate a farm 

production implementation while Curtis et al., and Frank et al., studied crop marketing problems. 

14.3.1.6 DEMP  

 Lambert and McCarl (1985) introduced the Direct Expected Maximizing Nonlinear Programming 

(DEMP) formulation, which maximizes the expected utility of wealth. DEMP was designed as an 

alternative to E-V analysis, relaxing some of the restrictions regarding the underlying utility function.  

The basic DEMP formulation requires specification of a utility of wealth function U(W), a level of initial 

wealth (Wo), and the probability distribution of the objective function parameters (Ckj).  The basic 

formulation is  
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where pk is the probability of the kth state of nature; 

 Wo is initial wealth; 

 Wk is the wealth under the kth state of nature; and 
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    ckj is the return to one unit of the jth activity under the kth state of nature. 

14.3.1.6.1 Example  

 Suppose an individual has the utility function for wealth of the form U = ( W) power  with an initial 

wealth (W0) of 100, and is confronted with the decision problem data as used in the E-V example.  The 

relevant DEMP formulation appears in Table 14.12 with the solution for varying values of the exponent 

appearing in Table 14.13.  The GAMS formulation is called DEMP. 

  The example model was solved for different values of the exponent (power).  The exponent was 

varied from 0.3 to 0.0001.  As this was varied, the solution again transitioned out of sole reliance on stock 

three into reliance on stocks two and three.  During the model calculations, transformations were done on 

the shadow price to convert it into dollars.  Following Lambert and McCarl, this may be converted into an 

approximate value in dollar space by dividing by the marginal utility of average income i.e., dividing the 

shadow prices by the factor. 

 
W

WU




 /*   

Preckel, Featherstone, and Baker discuss a variant of this procedure. 

14.3.1.6.2 Comments  

 The DEMP model has two important parts.  First, note that the constraints involving wealth can 

be rearranged to yield 

jkj
j

ok XcWW   

This sets wealth under the kth state of nature equal to initial wealth plus the increment to wealth due to the 

choice of the decision variables.  

 Second, note that the objective function equals expected utility.  Thus the formulation maximizes 

expected utility using the empirical distribution of risk without any distributional form assumptions and 

an explicit, exact specification of the utility function.   

 Kaylen, et al., employ a variation of DEMP where the probability distributions are of a known 

continuous form and numerical integration is used in the solution.  The DEMP model has been used by 

Lambert and McCarl(1989); Lambert; and Featherstone et al. 
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 Yassour, et al., present a related expected utility maximizing model called EUMGF, which 

embodies both an exponential utility function and distributional assumptions.  They recognize that the 

maximization of expected utility under an exponential utility function is equivalent to maximization of the 

moment generating function (Hogg and Craig) for a particular probability distribution assumption.  

Moment generating functions have been developed analytically for a number of distributions, including 

the Binomial, Chi Square, Gamma, Normal and Poisson distributions.  Collender and Zilberman and 

Moffit et al. have applied the EUMGF model.  Collender and Chalfant have proposed a version of the 

model no longer requiring that the form of the probability distribution be known. 

14.3.1.7 Other Formulations  

 The formulations mentioned above are the principal objective function risk formulations which 

have been used in applied mathematical programming risk research. However, a number of other 

formulations have been proposed.  Alternative portfolio models such as those by Sharpe; Chen and Baker; 

Thomas et al.(1972) exist.  Other concepts of target income have also been pursued (Boussard and Petit) 

as have models based upon game theory concepts (McInerney [1967, 1969]; Hazell and How; Kawaguchi 

and Maruyama; Hazell(1970); Agrawal and Heady; Maruyama; and Low) and Gini coefficients 

(Yitzhaki).  These have all experienced very limited use and are therefore not covered herein.  

14.3.2 Right Hand Side Risk  

 Risk may also occur within the right hand side (RHS) parameters.  The most often used approach 

to RHS risk in a nonrecourse setting is chance-constrained programming.  However, Paris(1979) has tried 

to introduce an alternative. 

14.3.2.1 Chance Constrained Programming  

 The chance-constrained formulation was introduced by Charnes and Cooper and deals with 

uncertain RHS's assuming the decision maker is willing to make a probabilistic statement about the 

frequency with which constraints need to be satisfied.  Namely, the probability of a constraint being  

satisfied is greater than or equal to a prespecified value  
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j
bXaP  

.



copyright 1997 Bruce A. McCarl and Thomas H. Spreen 

23

If the average value of the RHS is subtracted from both sides of the inequality and in turn both  

sides are divided by the standard deviation of the RHS then the constraint becomes 
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Those familiar with probability theory will note that the term 
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gives the number of standard errors that bi is away from the mean.  Let Z denote this term.   

 When a particular probability limit α is used, then the appropriate value of Z is Z� and the  

constraint becomes 
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Assuming we discount for risk, then the constraint can be restated as 

 

ibijij
j

ZbXa   

which states that resource use (∑aijXj) must be less than or equal to average resource availability less the 

standard deviation times a critical value which arises from the probability level. 

 Values of Zα may be determined in two ways: a) by making assumptions about the form of the 

probability distribution of bi (for example, assuming normality and using values for the lower tail from a 

standard normal probability table); or b) by relying on the conservative estimates generated by using 

Chebyshev's inequality, which states the probability of an estimate falling greater than M standard 

deviations away from the mean is less than or equal to one divided by M2.  Using the Chebyshev 

inequality one needs to solve for that value of M such that (1-α) equals 1/M2.  Thus, given a probability α, 

)b( i

ib
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the Chebyshev value of Zα is given by the equation Zα=(1-α)-0.5.  Following these approaches, if one 

wished an 87.5 percent probability, a normality assumption would discount 1.14 standard deviations and 

an application of the Chebyshev inequality would lead to a discount of 2.83 standard deviations.  

However, one should note that the Chebyshev bound is often too large.  

14.3.2.1.1 Example   

 The example problem adopted for this analysis is in the context of the resource allocation 

problem from Chapter V.  Here three of the four right hand sides in that problem are presumed to be 

stochastic with the distribution as given in Table 14.14.  Treating each of these right hand side 

observations as equally likely, the mean value equals those numbers that were used in the resource 

allocation problem and their standard errors respectively are as given in Table 14.14.  Then the resultant 

chance constrained formulation is 
Max 67X1 + 66X2 + 66.3X3 + 80X4 + 78.5X5 + 78.4X6  

s.t 0.8X1 + 1.3X2 + 0.2X3 + 1.2X4 + 1.7X5 + 0.5X6 ≤ 140 - 9.63 Zα

 0.5X1 + 0.2X2 + 1.3X3 + 0.7X4 + 0.3X5 + 1.5X6 ≤ 90 - 3.69 Zα

 0.4X1 + 0.4X2 + 0.4X3 + X4 + X5 + X6 ≤ 120 - 8.00 Zα

 X1 + 1.05X2 + 1.1X3 + 0.8X4 + 0.82X5 + 0.84X6 ≤     125 

 

 The GAMS implementation is the file CHANCE.  The solutions to this model were run for Z 

values corresponding to 0, 90 ,95, and 99 percent confidence intervals under a normality assumption.  The 

right hand sides and resultant solutions are tabled in Table 14.15.  Notice as the Zα value is increased, then 

the value of the uncertain right hand side decreases.  In turn, production decreases as does profit.  The 

chance constrained model discounts the resources available, so one is more certain that the constraint will 

be met.  The formulation also shows how to handle simultaneous constraints.  Namely the constraints 

may be treated individually.  Note however this requires an assumption that the right hand sides are 

completely independent.  The results also show that there is a chance of the constraints being exceeded 

but no adjustment is made for what happens under that circumstance.   

14.3.2.1.2 Comments  
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 Despite the fact that chance constrained programming (CCP) is a well known technique and has 

been applied to agriculture (e.g., Boisvert, 1976; Boisvert and Jensen, 1973; and Danok et al., 1980) and 

water management (e.g., Eisel; Loucks; and Maji and Heady) its use has been limited and controversial.  

See the dialogue in Blau; Hogan, et al.; and Charnes and Cooper (1959). 

 The major advantage of CCP is its simplicity; it leads to an equivalent programming problem of 

about the same size and the only additional data requirements are the standard errors of the right hand 

side.  However, its only decision theoretic underpinning is Simon's principle of satisficing (Pfaffenberger 

and Walker). 

 This CCP formulation applies when either one element of the right hand side vector is random or 

when the distribution of multiple elements is assumed to be perfectly correlated.  The procedure has been 

generalized to other forms of jointly distributed RHS's by Wagner (1975).  A fundamental problem with 

chance constrained programming (CCP) is that it does not indicate what to do if the recommended 

solution is not feasible.  From this perspective, Hogan et al., (1981), conclude that "... there is little 

evidence that CCP is used with the care that is necessary" (p. 698) and assert that recourse formulations 

should be used.   

14.3.2.2 A Quadratic Programming Approach  

 Paris(1979) proposed a quadratic programming model which permits RHS risk in an E-V context.  

In contrast to chance constrained programming, the formulation treats inter-dependencies between the 

RHS's.  The formulation is developed through an application of non-linear duality theory and is  
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where X is the vector of activities; ɸ and Θare risk aversion coefficients with respect to variance in 

returns and the RHS.  Sc and Sb are variance-covariance matrices of returns and the RHS's, respectively; 

Y is the vector of dual variables, A is the matrix of technical coefficients, and is the vector of expected 

values of the RHS's. 

 This primal model explicitly contains the dual variables and the variance-covariance matrix of the 

b
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RHS's.  However, the solutions are not what one might expect.  Namely, in our experience, as right hand 

side risk aversion increases, so does expected income.  The reason lies in the duality implications of the 

formulation.  Risk aversion affects the dual problem by making its objective function worse.  Since the 

dual objective function value is always greater than the primal, a worsening of the dual objective via risk 

aversion improves the primal.  A manifestation of this appears in the way the risk terms enter the 

constraints.  Note given positive Θ and , then the sum involving Θ and Y on the left hand side 

augments the availability of the resources.  Thus, under any nonzero selection of the dual variables, as the 

risk aversion parameter increases so does the implicit supplies of resources.  Dubman et al., and 

Paris(1989) debate these issues, but the basic flaw in the formulation is not fixed.  Thus we do not 

recommend use of this formulation and do not include an example. 

14.3.3 Technical Coefficient Risk  

 Risk can also appear within the matrix of technical coefficients.  Resolution of technical 

coefficient uncertainty in a non-recourse setting has been investigated through two approaches.  These 

involve an E-V like procedure (Merrill), and one similar to MOTAD (Wicks and Guise).   

14.3.3.1 Merrill's Approach  
  

Merrill formulated a nonlinear programming problem including the mean and variance of the  

risky aij's into the constraint matrix.  Namely, one may write the mean of the risky part as and its 

variance as∑∑ XjXn σinj where  is the mean value of the aij's and σinj is the covariance of the aij 

coefficients for activities n and j in row i.  Thus, a constraint containing uncertain coefficients can be 

rewritten as  

iallforbXXXa iinjnj
nj
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  Note that the term involving σinj is added inflating resource use above the average to reflect 

variability, thus a safety cushion is introduced between average resource use and the reserve limit.  The 

parameter � determines the amount of safety cushion to be specified exogenously and could be done 

using distributional assumptions (such as normality) or Chebyshev's inequality as argued in McCarl and 

Bessler.  The problem in this form requires usage of nonlinear programming techniques.  

 Merrill's approach has been unused largely since it was developed at a time when it was 

incompatible with available software.  However, the MINOS algorithm in GAMS provides capabilities 

for handling the nonlinear constraint terms (although solution times may be long -- McCarl and Onal).  

Nevertheless the simpler Wicks and Guise approach discussed below is more likely to be used.  Thus no 

example is given. 

14.3.3.2 Wicks and Guise Approach  

 Wicks and Guise provided a LP version of an uncertain aij formulation based on Hazell(1971) and 

Merrill's models.  Specifically, given that the ith constraint contains uncertain aij's, the following 

constraints may be set up.  
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 Here the first equation relates the mean value of uncertain resource usage plus a risk term (ɸ 

Di) to the right hand side, while the second computes the deviation ( akij - ) incurred from the kth joint 

observation on all aij's and sums it into a pair of deviation variables  
kiki dd , .  These deviation variables 

are in turn summed into a measure of total absolute deviation (Di) by the third equation.  The term ɸ Di 

then gives the risk adjustment to the mean resource use in constraint i where ɸ is a coefficient of risk 

aversion.  

 The Wicks and Guise formulation is essentially this; however, Wicks and Guise convert the total 

absolute deviation into an estimate of standard deviation using a variant of the Fisher constant but we will 

use the one discussed above 

ija
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ΔD - σ = 0      

where Δ  = (Π/(2n(n-1))).5 and is the standard error approximation.  The general Wicks Guise 

formulation is  

 

14.3.3.2.1 Example  

 Suppose we introduce ingredient uncertainty in the context of the feed problem as discussed in 

Chapter V.  Suppose one is using three feed ingredients corn, soybeans, and wheat while having to meet 

energy and protein requirements.  However, suppose that there are four states of nature for energy and 

protein nutrient content as given in Table 14.16.  Assume that the unit price of corn is 3 cents, soybeans 6 

cents, and wheat 4 cents and that the energy requirements are 80% of the unit weight of the feed while the 

protein requirement is 50%.  In turn, the GAMS formulation of this is called WICKGUIS and a tableau is 

given in Table 14.17.    

 The solution to the Wicks Guise example model are given in Table 14.18.  Notice in this table 

when the risk aversion parameter is 0 then the model feeds corn and wheat, but as the risk aversion 

parameter increases the model first reduces its reliance on corn and increases wheat, but as the risk 

aversion parameter gets larger and larger one begins to see soybeans come into the answer.  Notice across 

these solutions, risk aversion generally increases the average amount of protein with reductions in protein 

variability.  As the risk aversion parameter increases, the probability of meeting the constraint increases.  

Also notice that the shadow price on protein monotonically increases indicating that it is the risky 

ingredient driving the model adjustments.  Meanwhile average energy decreases, as does energy variation 

and the shadow price on energy is zero, indicating there is sufficient energy in all solutions.     

14.3.3.2.2 Comments  

 The reader should note that the deviation variables do not work well unless the constraint 

including the risk adjustment is binding.  However, if it is not binding, then the uncertainty does not 

matter.  

 The Wicks and Guise formulation has not been widely used.  Other than the initial application by 

Wicks and Guise the only other application we know of is that of Tice.  
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 Several other efforts have been made regarding aij uncertainty.  The method used in Townsley 

and later by Chen (1973) involves bringing a single uncertain constraint into the objective function.  The 

method used in Rahman and Bender involves developing an over-estimate of variance.  

14.3.4 Multiple Sources of Risk  

 Many problems have C's, A's and b's which are simultaneously uncertain.  The formulations 

above may be combined to handle such a case.  Thus, one could have a E-V model with several 

constraints handled via the Wicks Guise and/or chance constrained techniques.  There are also techniques 

for handling multiple sources of risk under the stochastic programming with recourse topic. 

 

14.4 Sequential Risk-Stochastic Programming with Recourse  

 Sequential risk arises as part of the risk as time goes on and adaptive decisions are made.  

Consider the way that weather and field working time risks are resolved in crop farming.  Early on, 

planting and harvesting weather are uncertain.  After the planting season, the planting decisions have been 

made and the planting weather has become known, but harvesting weather is still uncertain.  Under such 

circumstances a decision maker would adjust to conform to the planting pattern but would still need to 

make harvesting decisions in the face of harvest time uncertainty.  Thus sequential risk models must 

depict adaptive decisions along with fixity of earlier decisions (a decision maker cannot always undo 

earlier decisions such as planted acreage).  Nonsequential risk, on the other hand, implies that a decision 

maker chooses a decision now and finds out about all sources of risk later. 

 All the models above are nonsequential risk models.  Stochastic programming with recourse 

(SPR) models are used to depict sequential risk.  The first of the models was originally developed as the 

"two-stage" LP formulation by Dantzig (1955).  Later, Cocks devised a model with N stages, calling it 

discrete stochastic programming.  Over time, the whole area has been called stochastic programming with 

recourse (SPR).  We adopt this name.  

14.4.1 Two stage SPR formulation  

 Suppose we set up a two stage SPR formulation.  Such formulations contain a probability tree 

(Figure 14.3).  The nodes of the tree represent decision points.  The branches of the tree represent 
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alternative possible states.  A two stage model has one node and set of decision variables (X) at the first 

stage, with the second stage containing branches associated with the resolved uncertainty from the first 

stage and associated decision nodes (Zk).  

 Suppose the variables Xj indicate the amount of the jth alternative which is employed in the first 

stage.  There is an associated set of resource constraints where the per unit usage of the ith resource by Xj 

is aij and the endowment of the resources bi.  Suppose that the outcome of Xj is uncertain and dependent 

on state of nature where the quantity of the mth output item produced is dmjk where k designates state of 

nature.  Let us also define cj as the objective function coefficient for Xj.  In the second stage, the variables 

are Znk, where n represents the nth alternative for production and k identifies state of nature.  Here we have 

different decision variables for each second stage state of nature.  For example, we have the amount of 

stock sold if the market has been moving up and the amount of stock sold if the market is moving down, 

with second stage decisions that depend upon the resultant state of nature after the first stage.  We also 

have parameters which give the amount of the mth output item carrying over from stage one (fmnk) while 

gwnk gives the amount of the wth resource utilized by Znk.  Finally, the objective function parameter for Znk 

is enk.  The model also requires definition of right hand side parameters where swk is the amount of the wth 

resource available under the kth state of nature.  In setting this model up we also define a set of accounting 

variables Yk, which add up income under the states of nature.  Finally suppose pk gives the probability of 

state k.   The composite model formulation is 

 In this problem we have income variables for each of the k states of nature (Yk) which are 

unrestricted in sign.  Given that pk is the probability of the kth state of nature, then the model maximizes  
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expected income.  Note the income variable under the kth state of nature is equated to the sum of the 

nonstochastic income from the first stage variables plus the second stage state of nature dependent profit 

contribution.  Also note that since Z has taken on the subscript k, the decision variable value will in 

general vary by state of nature.   

 Several points should be noted about this formulation.  First, let us note what is risky.  In the 

second stage the resource endowment (Swk), constraint coefficients (dmjk, fmnk, gwnk) and objective function 

parameters (enk) are dependent upon the state.  Thus, all types of coefficients (RHS, OBJ and Aij) are 

potentially risky and their values depend upon the path through the decision tree.  

 Second, this model reflects a different uncertainty assumption for X and Z.  Note Z is chosen with 

knowledge of the stochastic outcomes; however, X is chosen a priori, with it's value fixed regardless of 

the stochastic outcomes.  Also notice that the first, third, and fourth constraints involve uncertain 

parameters and are repeated for each of the states of nature.  This problem then has a single X solution 

and a Z solution for each state of nature.  Thus, adaptive decision making is modeled as the Z variables 

are set conditional on the state of nature.  Note that irreversabilities and fixity of initial decisions is 

modeled.  The X variables are fixed across all second stage states of nature, but the Z variables adapt to 

the state of nature.  

 Third, let us examine the linkages between the stages.  The coefficients reflect a potentially risky 

link between the predecessor (X) and successor (Z) activities through the third constraint.  Note the link is 

essential since if the activities are not linked, then the problem is not a sequential decision problem.  
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These links may involve the weighted sum of a number of predecessor and successor variables (i.e., an 

uncertain quantity of lumber harvested via several cutting schemes linked with use in several products).  

Also, multiple links may be present (i.e., there may be numerous types of lumber).  The subscript m 

defines these links.  A fourth comment relates to the nature of uncertainty resolution.  The formulation 

places all uncertainty into the objective function, which maximizes expected income. 

14.4.1.1 Example  

 Let us consider a simple farm planning problem.  Suppose we can raise corn and wheat on a 100 

acre farm.  Suppose per acre planting cost for corn is $100 while wheat costs $60.  However, suppose 

crop yields, harvest time requirements per unit of yield, harvest time availability and crop prices are 

uncertain.  The deterministic problem is formulated as in Table 14.20 and file SPREXAM1.  Here the 

harvest activities are expressed on a per unit yield basis and the income variable equals sales revenue 

minus production costs.   

 The uncertainty in the problem is assumed to fall into two states of nature and is expressed in 

Table 14.19.  These data give a joint distribution of all the uncertain parameters.  Here RHS's, aij's and 

objective function coefficient's are uncertain. 

 Solution of the Table 14.20 LP formulation under each of the states of nature gives two very 

different answers.  Namely under the first state of nature all acreage is in corn while under the second 

state of nature all production is in wheat.  These are clearly not robust solutions. 

 The SPR formulation of this example is given in Table 14.21.  This tableau contains one set of 

first stage variables (i.e., one set of corn growing and wheat growing activities) coupled with two sets of 

second stage variables after the uncertainty is resolved (i.e., there are income, harvest corn, and harvest 

wheat variables for both states of nature).  Further, there is a single unifying objective function and land 

constraint, but two sets of constraints for the states of nature (i.e., two sets of corn and wheat yield 

balances, harvesting hour constraints and income constraints).  Notice underneath the first stage corn and 

wheat production variables, that there are coefficients in both the state of nature dependent constraints 

reflecting the different uncertain yields from the first stage (i.e., corn yields 100 bushels under the first 

state of nature and 105 under the second; while wheat yields 40 under the first and 38 under the second).  
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However, in the second stage resource usage for harvesting is independent.  Thus, the 122 hours available 

under the first state of nature cannot be utilized by any of the activities under the second state of nature.  

Also, the crop prices under the harvest activities vary by state of nature as do the harvest time resource 

usages.   

 The example model then reflects, for example, if one acre of corn is grown that 100 bushels will 

be available for harvesting under state of nature one, while 105 will be available under state of nature two.  

In the optimum solution there are two harvesting solutions, but one production solution.  Thus, we model 

irreversibility (i.e., the corn and wheat growing variable levels maximize expected income across the 

states of nature, but the harvesting variable levels depend on state of nature). 

 The SPR solution to this example is shown in Table 14.22.  Here the acreage is basically split 50-

50 between corn and wheat, but harvesting differs with almost 4900 bushels of corn harvested under the 

first state, where as 5100 bushels of corn are harvested under the second.  This shows adaptive decision 

making with the harvest decision conditional on state of nature.  The model also shows different income 

levels by state of nature with $18,145 made under state of nature one and $13,972 under state of nature 

two.  Furthermore, note that the shadow prices are the marginal values of the resources times the 

probability of the state of nature.  Thus, wheat is worth $3.00 under the first state of nature but taking into 

account that the probability of the first state of nature is 60% we divide the $3.00 by .6 we get the original 

$5.00 price.  This shows the shadow prices give the contribution to the average objective function.  If one 

wishes shadow prices relevant to income under a state of nature then one needs to divide by the 

appropriate probability. 

 The income accounting feature also merits discussion.  Note that the full cost of growing corn is 

accounted for under both the first and second states of nature.  However, since income under the first state 

of nature is multiplied by .6 and income under the second state of nature is multiplied by .4, then no 

double counting is present.  

14.4.2 Incorporating Risk Aversion  

 The two stage model as presented above is risk neutral.  This two stage formulation can be altered 

to incorporate risk aversion by adding two new sets of constraints and three sets of variables following the 
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method used in the unified model above.  An EV formulation is  
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Note that within this formulation the first new constraint that we add simply accounts expected income 

into a variable , while the second constraint computes deviations from expected income into new 

deviation variables dk
+, dk

- which are defined by state of nature.  Further, the objective function is 

modified so it contains expected income minus a risk aversion parameter times the probabilistically 

weighted squared deviations (i.e., variance).  This is as an EV model.  The model may also be formulated 

in the fashion of the unified model discussed earlier to yield either a MOTAD or an E-standard deviation 

model. 

14.4.2.1 Example   

 Suppose we use the data from the above Wicks Guise example but also allow decision makers 

once they discover the state of nature, to supplement the diet.  In this case, suppose the diet supplement to 

correct for excess protein deviation costs the firm $0.50 per protein unit while insufficient protein costs 

$1.50 per unit.  Similarly, suppose excess energy costs $1.00 per unit while insufficient energy costs 

$0.10.  The resultant SPR tableau, portraying just two of the four states of nature included in the tableau, 

is shown in Table 14.23 (This smaller portrayal is only done to preserve readability, the full problem is 

solved).  Notice we again have the standard structure of an SPR.  Namely the corn, soybeans, and wheat 

activities are first stage activities, then in the second stage there are positive and negative nutrient 

Y
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deviations for each state as well as state dependent objective function and deviation variable accounting.  

Notice the average cost row adds the probabilistically weighted sums of the state of nature dependent 

variables into average cost while the cost deviation rows compute deviation under a particular state of 

nature.  In turn, these deviations are weighted by the probability times the risk aversion parameter and are 

entered in the objective function.  The deviation variables could be treated to form an E-V, MOTAD or E-

Standard error formulation as in the unified model above.  An E-standard deviation model will be used 

here and is implemented in the GAMS file FEEDSPR.  Also note these activities repeat for the second 

state of nature and also would for the third and fourth if they were portrayed here. 

 The risk neutral solution to this problem is given in Table 14.24.  Two solution aspects are worth 

discussing.  First, notice that the first stage solution is to buy .283 pounds of corn, .362 pounds of 

soybeans, .355 pounds of wheat at an average cost of 6.7 cents.  Cost varies across the states of nature 

with cost under the first state equaling 8.1 cents, while under the second state it is 8.3, 5.2 under the third 

state and 5.1 under the fourth state.  The cost variation arises as the protein and energy shortfall and 

excess variables take on different values in order to mitigate nutrient fluctuation.   

 The model was also solved for risk aversion.  The results in Table 14.25 show the solutions from 

the example model under varying risk aversion coefficients for a standard deviation implementation.  

Table 14.25 gives the changes in corn, soybean, and wheat usage, as well as average income and standard 

error of income as the risk aversion parameter is changed for an E-standard deviation formulation as 

implemented in the file FEEDSPR.  Here the risk aversion parameter was varied from 0.0 up to 0.6.  As 

risk aversion increases the average cost of the diet increases, but the standard error of the cost of the diet 

falls with cost variation between the various states of nature narrowing.  Namely under risk neutrality cost 

ranges from 5.1 cents to 8.1 cents with a standard error of 1.5 cents, however by the time the risk aversion 

parameter is up to .4 the cost varies from only 6.7 to 7.4 cents with a standard error of two tenths of a 

cent, at the expense of a 0.4 cent increase in average diet cost.  Thus, as risk aversion increases, the model 

adopts a plan which stabilizes income across all of the states of nature.   

14.4.3 Extending to Multiple Stages    

  The models above are two stage models with a set of predecessor activities followed by sets of 
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successor activities for each state of nature.  It is possible to formulate a multiple stage model as done by 

Cocks.  In such a model however, it is relatively cumbersome to express a general formulation.  Thus, we 

will express this model only in terms of an example (See Cocks for an N stage formulation and Boisvert 

and McCarl for a three stage one).  Let us formulate a relatively simple stock model.  Suppose that a firm 

starts with an initial inventory 100 units of common stock and is trying to maximize average ending 

worth.  In doing this, suppose that the stock can be sold in one of three time periods.  The first one which 

is nonstochastic, the second one which is characterized by two states of nature, and the third which is 

characterized by two additional states of nature.  In describing the states of nature the following data are 

relevant.  In period one (today) the firm knows the price is $2.00.  In period two, the firm is uncertain of 

the interest rate between periods and the future price.  Assume that under state of nature 1, the interest 

rate between period one and two for any stock sold is one percent while it is two percent under the second 

state of nature 2.  Simultaneously the stock price is $2.20 under the first state of nature and $2.05 under 

the second.  Going into the third state of nature, the interest rate is conditional on which state of nature 

was drawn for the second state.  Thus, in the third stage if the first state arose the third stage interest rates 

are then either 6% (A) or 4% (B).  On the other hand if the second state occurs, the interest rate will either 

be 7% (A) or 3% (B).  Third stage crop prices are dependent of which of the two third stage states of 

nature occur.  Under the first state of nature (A) the price is $2.18, while under the second one it is $2.44.  

The third stage probabilities are also conditional.  Namely, after the first stage one gets state 1 occurring 

70% of the time while state 2 occurs 30%of the time.  When state 2 results out of stage one then the third 

stage probability for state A is 60% and is 40% for state B.  On the other hand, these probabilities change 

to .7 and .3 if the second state happened out of stage 1. 

 The resultant formulation of this problem is given in Table 14.26 and file SELLSPR.  Here, 

again, there is one set of period one variables which refer to either keeping or selling the stock; two sets 

of period two variables, which refer again to keep or sell the stock under each second stage state of 

nature; and four sets of period three variables for selling the stock and accounting ending net worth under 

all the third stage states of nature.  Note in the first period, if the stock is kept, it carries over from the first 

period to both states of nature in the second stage.  Then in the second period the keep activity from the 
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first period provides stock that could either be sold or kept on into the third.  In turn, if stock is kept in the 

second stage, it is held over to both third period states of nature which follow that second period state of 

nature.  Notice the probabilities of each of the final states are reflected in the average ending worth.  The 

worth under period three state A following period two state one is multiplied 0.42 which reflects the 70% 

probability of period two state one times the 60% conditional probability of period three state A.  Also, 

notice the prices as they enter the ending worth by state of nature are the sales price in the relevant period 

times 1 plus interest earned in the interim periods.  Thus, the ending worth of period one sales following 

period two state one and period three state A is 2.1412.  This reflects the original sales price of $2.00, the 

1% interest into the second period and the 6% interest into the third period.  The solution to this model is 

given in Table 14.27. 

14.4.4 Model Discussion  

 The SPR model is perhaps the most satisfying of the risk models.  Conceptually it incorporates all 

sources of uncertainty: right hand side, objective function and technical coefficients while allowing 

adaptive decisions.  However, the formulations suffer from the "curse of dimensionality."  Each possible 

final state of nature leads to another set of stage two or later activities and large models can result from 

relatively simple problems.  For example, consider having ten values of two right hand sides which were 

independently distributed.  This would lead to 100 terminal states or sets of rows.  However, such models 

can be computationally tractable, since the sparsity and repeated structure tend to make such problems 

easier to solve than their size would imply.  Thus, one of the things to be cautious about when using this 

particular formulation is size.  When dealing with such a model, it is often advisable to determine the 

critical sources of uncertainty which should be extensively modeled.  Uncertainties other than the "most 

critical" may be handled with such methods as MOTAD, Wicks and Guise, or chance-constrained as 

discussed above.  Sources of uncertainty which are not important in the problem may be held at their 

expected values (see Tice for an example).  Thus, with careful application, this type of model can be quite 

useful. 

 Agricultural economics applications include Yaron and Horowit (1972a); Garoian, et al.; Apland, 

et al.(1981); Lambert and McCarl(1989); Leatham and Baker; McCarl and Parandvash; and the early 
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papers by Rae (1971a, 1971b).  Hansotia; Boisvert and McCarl; and Apland and Kaiser provide literature 

reviews. 

14.5 General Comments On Modeling Uncertainty  

 As demonstrated above, there are a number of ways of handling uncertainty when modeling.  

Several aspects of these types of models need to be pointed out.  First, all the formulations convert the 

problems to a deterministic equivalent.  Basically, it is assumed that the decision maker is certain of the 

risk and reacts to it optimally by discounting the objective function, aij's or right hand sides.  Obviously 

this means the modeler must assume knowledge of the distribution of risk faced by a decision maker and 

the risk aversion coefficient.   

 The second set of comments regards data.  Important parameters within the context of risk models 

are the expectation of the coefficient value and its probability distribution around that expectation.  The 

most common practice for specification of these parameters is to use the historical mean and variance.  

This, however, is neither necessary nor always desirable.  Fundamentally, the measures that are needed 

are the value expected for each uncertain parameter and the perceived probability distribution of 

deviations from that expectation (with joint distributions among the various uncertain parameters).  The 

parameter expectation is not always a historical mean.  This is most unrealistic in cases where there has 

been a strong historical trend (as pointed out by Chen, 1971).  There is a large body of literature dealing 

with expectations and/or time series analysis (see Judge for an introduction), and some use of these results 

and procedures appears desirable.  

 Data are most often generated historically; however, observations could be generated by several 

other means.  For example, observations could be developed from a simulation model (see Dillon, et al.), 

from a forecasting equation (see Lambert and McCarl(1989)), or from subjective interrogation of the 

decision maker (see Sri Ramaratnam et al.).  There are cases where these other methods are more 

appropriate than history due to such factors as limited historical data (say, on the price of a new product) 

or major structural changes in markets.  Naturally, the form in which the data are collected depends on the 

particular application involved.  

 A final comment on data regards their probabilistic nature.  Basically when using historically 



copyright 1997 Bruce A. McCarl and Thomas H. Spreen 

39

based means and variance one is assuming that all observations are equally probable.  When this 

assumption is invalid, the model is modified so that the value expected is the probabilistically weighted 

mean (if desired) and the variance formula includes the consideration of probability (see Anderson, et al. 

[pp. 28- 29] for examples). Deviation models must also be adjusted so that the deviations are weighted by 

their probability as done in the MOTAD version of the discrete stochastic model in section 14.23.  

 A third and again independent line of comment relates to the question "should uncertainty be 

modeled and if so, how?"  Such a concern is paramount to this section.  It is obvious from the above that 

in modeling uncertainty, data are needed describing the uncertainty, and that modeling uncertainty makes 

a model larger and more complex, and therefore harder to interpret, explain, and deal with.  It is not the 

purpose of these comments to resolve this question, but rather to enter some considerations to the 

resolution of this question.  First and fundamentally, if a model solution diverges from reality because the 

decision maker in reality has somehow considered risk, then it is important to consider risk.  This leads to 

the subjective judgment on behalf of the modeling team as to whether risk makes a difference.  Given that 

risk is felt to make a difference, then, how should risk be modeled?  In the approaches above, the 

formulation model depends upon whether there is conditional decision making and on what is uncertain.  

These formulations are not mutually exclusive; rather, it may be desirable to use combinations of these 

formulations (see, for example, Wicks and Guise, Tice or Klemme).  

 Several uncertainty models have not been covered the above discussion.  There are more 

advanced applications of chance constrained programming such as those found in the books by Sengupta; 

Vajda; and Kolbin.  Another approach is called "Cautions Suboptimizing" by Day (1979).  This approach 

bounds the adjustments in variables to a maximum amount in any one year.  We also have not covered 

Monte Carlo programming as espoused by Anderson, et al., mainly because we do not feel it falls into the 

class of programming techniques but rather is a simulation technique.  

 Finally, it is relevant to discuss how risk should be modeled.  There have been arguments 

presented in literature (e.g. see, for example, Baker and McCarl or Musser, et al.) that risk model 

solutions are biased if the model structure is not adequate before risk modeling is incorporated.  Baker 

and McCarl argue that one should not include risk until the model structure is fully specified in terms of 
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the needed constraints, the time disaggregation of constraints, and activities.   
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Table 14.1. Data for E-V Example -- Returns by Stock and Event 

 ----Stock Returns by Stock and Event---- 

 Stock1 Stock2   Stock3        Stock4 

Event1 7  6 8 5  

Event2 8  4 16 6  

Event3 4  8 14 6  

Event4 5  9 -2 7  

Event5 6  7 13 6  

Event6 3  10 11 5  

Event7 2  12 -2 6  

Event8 5  4 18 6  

Event9 4  7 12 5  

Event10 3  9 -5 6  

     

 Stock1 Stock2 Stock3 Stock4 
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Price 22 30 28 26 

 
 

Table 14.2. Mean Returns and Variance Parameters for Stock Example 

 Stock1 Stock2 Stock3  Stock4  

Mean Returns     4.70   7.60     8.30     5.80 

     

Variance-Covariance Matrix    

 Stock1 Stock2 Stock3 Stock4 

Stock1 3.21 -3.52 6.99 0.04 

Stock2 -3.52 5.84 -13.68 0.12 

Stock3 6.99 -13.68 61.81 -1.64 

Stock4 0.04 0.12 -1.64 0.36 

 
 
 
Table 14.3. GAMS Formulation of E-V Problem 

 
   5   SETS       STOCKS  POTENTIAL INVESTMENTS / BUYSTOCK1*BUYSTOCK4 / 
   6              EVENTS  EQUALLY LIKELY RETURN STATES OF NATURE 
   7                                            /EVENT1*EVENT10 / ; 
   8   
   9   ALIAS (STOCKS,STOCK); 
  10   
  11   PARAMETERS     PRICES(STOCKS) PURCHASE PRICES OF THE STOCKS 
  12                                / BUYSTOCK1   22 
  13                                  BUYSTOCK2   30 
  14                                  BUYSTOCK3   28 
  15                                  BUYSTOCK4   26 / ; 
  16   
  17   SCALAR      FUNDS    TOTAL INVESTABLE FUNDS / 500 / ; 
  18   
  19   TABLE RETURNS(EVENTS,STOCKS) RETURNS BY STATE OF NATURE EVENT 
  20   
  21             BUYSTOCK1  BUYSTOCK2   BUYSTOCK3   BUYSTOCK4 
  22     EVENT1      7           6           8           5 
  23     EVENT2      8           4          16           6 
  24     EVENT3      4           8          14           6 
  25     EVENT4      5           9          -2           7 
  26     EVENT5      6           7          13           6 
  27     EVENT6      3          10          11           5 
  28     EVENT7      2          12          -2           6 
  29     EVENT8      5           4          18           6 
  30     EVENT9      4           7          12           5 
  31     EVENT10     3           9          -5           6 
  32   
  33   PARAMETERS 
  34      MEAN (STOCKS)       MEAN RETURNS TO X(STOCKS) 
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  35      COVAR(STOCK,STOCKS) VARIANCE COVARIANCE MATRIX; 
  36   
  37   MEAN(STOCKS) = SUM(EVENTS , RETURNS(EVENTS,STOCKS) / CARD(EVENTS) ); 
  38   COVAR(STOCK,STOCKS) 
  39        = SUM (EVENTS ,(RETURNS(EVENTS,STOCKS) - MEAN(STOCKS)) 
  40                      *(RETURNS(EVENTS,STOCK)- MEAN(STOCK)))/CARD(EVENTS); 
  41   
  42   DISPLAY MEAN , COVAR ; 
  43   
  44   SCALAR RAP   RISK AVERSION PARAMETER / 0.0 / ; 
  45   
  46   POSITIVE VARIABLES    INVEST(STOCKS)  MONEY INVESTED IN EACH STOCK 
  47   
  48   VARIABLE              OBJ            NUMBER TO BE MAXIMIZED ; 
  49   
  50   EQUATIONS             OBJJ           OBJECTIVE FUNCTION 
  51                                    INVESTAV      INVESTMENT FUNDS AVAILABLE 
  52              ; 
  53   
  54   OBJJ.. 
  55   OBJ =E=   SUM(STOCKS, MEAN(STOCKS) * INVEST(STOCKS)) 
  56           - RAP*(SUM(STOCK, SUM(STOCKS, 
  57              INVEST(STOCK)* COVAR(STOCK,STOCKS) * INVEST(STOCKS)))); 
  58   
  59   INVESTAV..     SUM(STOCKS, PRICES(STOCKS) * INVEST(STOCKS)) =L= FUNDS ; 
  60   
  61   MODEL EVPORTFOL /ALL/ ; 
  62   
  63   SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ ; 
  64   
  65   SCALER VAR  THE VARIANCE ; 
  66          VAR = SUM(STOCK, SUM(STOCKS, 
  67               INVEST.L(STOCK)* COVAR(STOCK,STOCKS) * INVEST.L(STOCKS))) ; 

68 DISPLAY VAR ; 
69   

  70   SET RAPS   RISK AVERSION PARAMETERS /R0*R25/ 
  71   
  72   PARAMETER RISKAVER(RAPS) RISK AVERSION COEFICIENTS 
  73             /R0   0.00000,  R1   0.00025,  R2   0.00050,  R3   0.00075, 
  74              R4   0.00100,  R5   0.00150,  R6   0.00200,  R7   0.00300, 
  75              R8   0.00500,  R9   0.01000,  R10  0.01100,  R11  0.01250, 
  76              R12  0.01500,  R13  0.02500,  R14  0.05000,  R15  0.10000, 
  77              R16  0.30000,  R17  0.50000,  R18  1.00000,  R19  2.50000, 
  78              R20  5.00000,  R21  10.0000,  R22  15.    ,  R23  20. 
  79              R24  40.    ,  R25  80./ 
  80   
  81   PARAMETER OUTPUT(*,RAPS) RESULTS FROM MODEL RUNS WITH VARYING RAP 
  82   
  83   OPTION SOLPRINT = OFF; 
  84   
  85   LOOP (RAPS,RAP=RISKAVER(RAPS); 
  86          SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ ; 
  87          VAR = SUM(STOCK, SUM(STOCKS, 
  88              INVEST.L(STOCK)* COVAR(STOCK,STOCKS) * INVEST.L(STOCKS))) ; 
  89          OUTPUT("OBJ",RAPS)=OBJ.L; 
  90          OUTPUT("RAP",RAPS)=RAP; 
  91          OUTPUT(STOCKS,RAPS)=INVEST.L(STOCKS); 
  92          OUTPUT("MEAN",RAPS)=SUM(STOCKS, MEAN(STOCKS)*INVEST.L(STOCKS)); 
  93          OUTPUT("VAR",RAPS) = VAR; 
  94          OUTPUT("STD",RAPS)=SQRT(VAR); 
  95          OUTPUT("SHADPRICE",RAPS)=INVESTAV.M; 
  96          OUTPUT("IDLE",RAPS)=FUNDS-INVESTAV.L 
  97                ); 
  98   DISPLAY OUTPUT; 
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Table 14.4. E-V Example Solutions for Alternative Risk Aversion Parameters 
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     RAP             0         0.00025      0.0005     0.00075       0.001 
     BUYSTOCK2                               1.263       5.324       7.355 
     BUYSTOCK3      17.857      17.857      16.504      12.152       9.977 
     OBJ           148.214     143.287     138.444     135.688     134.245 
     MEAN          148.214     148.214     146.581     141.331     138.705 
     VAR         19709.821   19709.821   16274.764    7523.441    4460.478 
     STD           140.392     140.392     127.573      86.738      66.787 
     SHADPRICE       0.296       0.277       0.261       0.260       0.260 
 
     RAP            0.0015       0.002       0.003       0.005       0.010 
     BUYSTOCK2       9.386      10.401      11.416      12.229      12.838 
     BUYSTOCK3       7.801       6.713       5.625       4.755       4.102 
     OBJ           132.671     131.753     130.575     129.005     125.999 
     MEAN          136.080     134.767     133.454     132.404     131.617 
     VAR          2272.647    1506.907     959.949     679.907     561.764 
     STD            47.672      38.819      30.983      26.075      23.702 
     SHADPRICE       0.259       0.257       0.255       0.251       0.241 
 
     RAP             0.011       0.012       0.015       0.025       0.050 
     BUYSTOCK1                               1.273       4.372       4.405 
     BUYSTOCK2      12.893      12.960      12.420      11.070       8.188 
     BUYSTOCK3       4.043       3.972       3.550       2.561       1.753 
     BUYSTOCK4                                                       4.168 
     OBJ           125.441     124.614     123.380     120.375     116.805 
     MEAN          131.545     131.459     129.839     125.939     121.656 
     VAR           554.929     547.587     430.560     222.576      97.026 
     STD            23.557      23.401      20.750      14.919       9.850 
     SHADPRICE       0.239       0.236       0.234       0.230       0.224 
 
     RAP             0.100       0.300       0.500       1.000       2.500 
     BUYSTOCK1       4.105       3.905       3.865       3.835       1.777 
     BUYSTOCK2       6.488       5.354       5.128       4.958       2.289 
     BUYSTOCK3       1.340       1.064       1.009       0.968       0.446 
     BUYSTOCK4       6.829       8.602       8.957       9.223       4.296 
     OBJ           113.118     102.254      92.010      66.674      27.185 
     MEAN          119.327     117.774     117.463     117.230      54.370 
     VAR            62.086      51.734      50.905      50.556      10.874 
     STD             7.879       7.193       7.135       7.110       3.298 
     SHADPRICE       0.214       0.173       0.133       0.032           0 
     IDLE FUNDS                                                    268.044 
 

 
Notes: RAP is the risk aversion parameter (ɸ) value 
    Stocki gives the amount invested in stocki 
    Obj gives the objective function value 
    Mean gives expected income 
    Var gives the variance of income 
    STD gives the standard deviation of income 
    Shadprice gives the shadow price on the capital available constraint 
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Table 14.5. Deviations from the Mean for Portfolio 
Example 

 Stock1 Stock2 Stock3 Stock4 

Event1 2.3 -1.6 -0.3 -0.8  

Event2 3.3 -3.6 7.7 0.2  

Event3 -0.7 0.4 5.7 0.2  

Event4 0.3 1.4 -10.3 1.2  

Event5 1.3 -0.6 4.7 0.2  

Event6 -1.7 2.4 2.7 -0.8  

Event7 -2.7 4.4 -10.3 0.2  

Event8 0.3 -3.6 9.7 0.2  

Event9 -0.7 -0.6 3.7 -0.8  

Event10 -1.7 1.4 -13.3 0.2  
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Table 14.6. Example MOTAD Model Formulation 
 

0σTNDΔ

0TNDd

0dX0.200X13.300X1.400X1.700

0dX0.800X3.700X0.600X0.700

0dX0.200X9.700X3.600X0.300

0dX0.200X10.300X4.400X2.700

0dX0.800X2.700X2.400X1.700

0dX0.200X4.700X0.600X1.300

0dX1.200X10.300X1.400X0.300

0dX0.200X5.700X0.400X0.700

0dX0.200X7.700X3.600X3.300

0dX0.800X0.300X1.600X2.300

500X26X28X30X22s.t.

σγX5.80X8.30X7.60X4.70Max

k
k

104321

94321

84321

74321

64321

54321

44321

34321

24321

14321

4321
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Table 14.7. MOTAD Example Solutions for Alternative Risk Aversion Parameters 
 

     RAP                         0.050       0.100       0.110       0.120 
     BUYSTOCK2                                                      11.603 
     BUYSTOCK3      17.857      17.857      17.857      17.857       5.425 
     OBJ           148.214     140.146     132.078     130.464     129.390 
     MEAN          148.214     148.214     148.214     148.214     133.213 
     MAD           122.143     122.143     122.143     122.143      24.111 
     STDAPPROX     161.367     161.367     161.367     161.367      31.854 
     VAR         19709.821   19709.821   19709.821   19709.821     883.113 
     STD           140.392     140.392     140.392     140.392      29.717 
     SHADPRICE       0.296       0.280       0.264       0.261       0.259 
 
     RAP             0.130       0.150       0.260       0.400       0.500 
     BUYSTOCK1                                                       2.663 
     BUYSTOCK2      11.603      11.603      11.916      12.379      10.985 
     BUYSTOCK3       5.425       5.425       5.090       4.594       3.995 
     OBJ           129.072     128.435     125.179     121.204     118.606 
     MEAN          133.213     133.213     132.809     132.210     129.161 
     MAD            24.111      24.111      22.212      20.827      15.979 
     STDAPPROX      31.854      31.854      29.345      27.515      21.110 
     VAR           883.113     883.113     771.228     643.507     455.983 
     STD            29.717      29.717      27.771      25.367      21.354 
     SHADPRICE       0.258       0.257       0.250       0.242       0.237 
      
     RAP             0.750       1.000       1.250       1.500       1.750 
     BUYSTOCK1       5.145       7.119       2.817       2.817       2.817 
     BUYSTOCK2      10.409       9.879       5.617       5.617       5.617 
     BUYSTOCK3       2.661       1.564       1.824       1.824       1.824 
     BUYSTOCK4                   0.123       8.402       8.402       8.402 
     OBJ           114.168     111.009     108.372     106.086     103.801 
     MEAN          125.384     122.240     119.799     119.799     119.799 
     MAD            11.320       8.501       6.920       6.920       6.920 
     STDAPPROX      14.955      11.231       9.142       9.142       9.142 
     VAR           211.996     121.386      83.886      83.886      83.886 
     STD            14.560      11.018       9.159       9.159       9.159 
     SHADPRICE       0.228       0.222       0.217       0.212       0.208 
 
     RAP             2.000       2.500       5.000      10.000      12.500 
     BUYSTOCK1       2.817       2.817       2.858       2.858       2.858 
     BUYSTOCK2       5.617       5.617       4.178       4.178       4.178 
     BUYSTOCK3       1.824       1.824       1.242       1.242       1.242 
     BUYSTOCK4       8.402       8.402      10.654      10.654      10.654 
     OBJ           101.515      96.944      76.540      35.790      15.415 
     MEAN          119.799     119.799     117.289     117.289     117.289 
     MAD             6.920       6.920       6.169       6.169       6.169 
     STDAPPROX       9.142       9.142       8.150       8.150       8.150 
     VAR            83.886      83.886      57.695      57.695      57.695 
     STD             9.159       9.159       7.596       7.596       7.596 
     SHADPRICE       0.203       0.194       0.153       0.072       0.031 
 

 
Note: The abbreviations are the same as in Table 14.4 with the addition of MAD which gives the mean 

absolute deviation and STDAPPROX which gives the standard deviation approximation.  
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Table 14.8. Example Formulation of Safety First Problem 
 

 

 
 
 

 
 
Table 14.9. Safety First Example Solutions for Alternative Safety Levels 
 

RUIN         -100.000     -50.000       0.0        25.000      50.000 
BUYSTOCK2        0.0        2.736       6.219       7.960       9.701 

BUYSTOCK3      17.857      14.925      11.194       9.328       7.463 
OBJ           148.214     144.677     140.174     137.923     135.672 

MEAN          148.214     144.677     140.174     137.923     135.672 
VAR         19709.821   12695.542    6066.388    3717.016    2011.116 

STD           140.392     112.674      77.887      60.967      44.845 
SHADPRICE       0.296       0.280       0.280       0.280       0.280 

 
 

Note: The abbreviations are the same as in the previous example solutions with RUIN giving the safety 
level. 
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Table 14.10. Example Formulation of Target MOTAD Problem 
 

 
 

 

λDev

TDevX6X5XX3

TDevX5X12XX4

TDevX6X18XX5

TDevX6X2XX2

TDevX5X11XX3

TDevX6X13XX6

TDevX7X2XX5

TDevX6X14XX4

TDevX6X16XX8

TDevX5X8XX7

500X26X28XX22s.t.
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k
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Table 14.11. Target MOTAD Example Solutions for Alternative Deviation Limits 
 

 
     TARGETDEV     120.000      60.000      24.000      12.000      10.800 
     BUYSTOCK2       0.0         0.0         7.081      10.193      10.516 
     BUYSTOCK3      17.857      17.857      10.270       6.936       6.590 
     OBJ           148.214     148.214     139.059     135.037     134.618 
     MEAN          148.214     148.214     139.059     135.037     134.618 
     VAR         19709.821   19709.821    4822.705    1646.270    1433.820 
     STD           140.392     140.392      69.446      40.574      37.866 
     SHADPRICE       0.296       0.296       0.286       0.295       0.295 
 
     TARGETDEV       8.400       7.200       3.600 
     BUYSTOCK1       0.0         0.0         3.459 
     BUYSTOCK2      11.259      11.782      11.405 
     BUYSTOCK3       5.794       5.234       2.919 
     OBJ           133.659     132.982     127.168 
     MEAN          133.659     132.982     127.168 
     VAR          1030.649     816.629     277.270 
     STD            32.104      28.577      16.651 
     SHADPRICE       0.298       0.298       0.815 

 
Note:  The abbreviations are again the same with TARGETDEV giving the λ value.  
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Table 14.12. Example Formulation of DEMP Problem 
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Table 14.13. DEMP Example Solutions for Alternative Utility Function Exponents 
 

     POWER           0.950       0.900       0.750       0.500       0.400 
     BUYSTOCK2                               4.560       8.563       9.344 
     BUYSTOCK3      17.857      17.857      12.972       8.683       7.846 
     OBJ           186.473     140.169      60.363      15.282       8.848 
     MEAN          248.214     248.214     242.319     237.144     236.134 
     VAR         19709.821   19709.821    8903.295    3054.034    2309.233 
     STD           140.392     140.392      94.357      55.263      48.054 
     SHADPRICE       0.287       0.277       0.269       0.266       0.265 
 
     POWER           0.300       0.200       0.100       0.050       0.030 
     BUYSTOCK2       9.919      10.358      10.705      10.852      10.907 
     BUYSTOCK3       7.230       6.759       6.388       6.230       6.171 
     OBJ             5.127       2.972       1.724       1.313       1.177 
     MEAN          235.390     234.822     234.374     234.184     234.113 
     VAR          1843.171    1534.736    1320.345    1236.951    1207.076 
     STD            42.932      39.176      36.337      35.170      34.743 
     SHADPRICE       0.264       0.264       0.263       0.263       0.263 
 
     POWER           0.020       0.010       0.001      0.0001 
     BUYSTOCK2      10.934      10.960      10.960      10.960 
     BUYSTOCK3       6.143       6.115       6.115       6.115 
     OBJ             1.115       1.056       1.005       1.001 
     MEAN          234.079     234.045     234.045     234.045 
     VAR          1192.805    1178.961    1178.961    1178.961 
     STD            34.537      34.336      34.336      34.336 
     SHADPRICE       0.263       0.263       0.263         0 

 
Note:  The abbreviations are again the same with POWER giving the exponent used. 
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 Table 14.14. Chance Constrained Example Data 
Event Small Lathe Large Lathe Carver 

1 140 90 120 

2 120 94 132 

3 133 88 110 

4 154 97 118 

5 133 87 133 

6 142 86 107 

7 155 90 120 

8 140 94 114 

9 142 89 123 

10 141 85 123 

Mean 140 90 120 

Standard Error 9.63 3.69 8.00 

 
 
 
 
Table 14.15. Chance Constrained Example Solutions for Alternative Alpha Levels 
 

Z�               0.00       1.280       1.654       2.330 
 

PROFIT       10417.291    9884.611    9728.969    9447.647 
 

SMLLATHE       140.000     127.669     124.067     117.554 
LRGLATHE        90.000      85.280      83.900      81.407 
CARVER         120.000     109.760     106.768     101.360 
LABOR          125.000     125.000     125.000     125.000 

 
FUNCTNORM       62.233      78.102      82.739      91.120 
FANCYNORM       73.020      51.495      45.205      33.837 
FANCYMXLRG       5.180       6.788       7.258       8.108 

 

 
Note:  Z� is the risk aversion parameter. 
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Table 14.16. Feed Nutrients by State of Nature for Wicks Guise Example 
 

 Nutrient  State       CORN   SOYBEANS   WHEAT 
ENERGY     S1         1.15     0.26     1.05 
ENERGY     S2         1.10     0.31     0.95 
ENERGY     S3         1.25     0.23     1.08 
ENERGY     S4         1.18     0.28     1.12 

     
PROTEIN    S1         0.23     1.12     0.51 
PROTEIN    S2         0.17     1.08     0.59 
PROTEIN    S3         0.25     1.01     0.46 
PROTEIN    S4         0.15     0.99     0.56 
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Table 14.17. Wicks Guise Example 
 

 
 

Note: EnDev is the energy deviation 
    EnMAD is the energy mean absolute deviation 
    Enσ is the energy standard deviation approximations 
    PrDev is the protein deviation 
    PrMAD is the protein mean absolute deviation 
    Prσ is the protein standard deviation approximation 

01ΔσProtein

01)/4d(dProteinMAD

0dd0.070.010.01Proteins4

0dd0.030.040.08Proteins3

0dd0.100.040.07Proteins2

0dd0.000.010.02Proteins1
01ΔσEnergy

01)/4d(d

0dd0.070.010.01

0dd0.030.040.08

0dd0.100.040.07

0dd0.000.010.02
0.50.531.050.20
0.81.050.271.17
1111

k
pkpk

p4p4

p3p3

p2p2

p1p1

k
ekek

e4e4

e3e3

e2e2

e1e1

EnergyMAD

Energys4

Energys3

Energys2

Energys1

Protein

Energy

Volume

0.040.060.03Objective

σPrPrMADPrDevσEnEnMADEnDevWheatSoybeansCorn




















































copyright 1997 Bruce A. McCarl and Thomas H. Spreen 64

Table 14.18. Results From Example Wicks Guise Model Runs With Varying RAP 
 

     RAP                          0.250       0.500       0.750       1.000 
     CORN             0.091       0.046       0.211       0.230       0.221 
     SOYBEANS                                 0.105       0.129       0.137 
     WHEAT            0.909       0.954       0.684       0.641       0.642 
     OBJ              0.039       0.040       0.040       0.040       0.041 
     AVGPROTEIN       0.500       0.515       0.515       0.521       0.529 
     STDPROTEIN       0.054       0.059       0.030       0.028       0.029 
     AVGENERGY        1.061       1.056       0.993       0.977       0.969 
     STDENERGY        0.072       0.072       0.061       0.059       0.058 
     SHADPROT         0.030       0.033       0.036       0.037       0.038 
 
          
     RAP              1.250       1.500       2.000 
     CORN             0.211       0.200       0.177 
     SOYBEANS         0.146       0.156       0.176 
     WHEAT            0.643       0.644       0.647 
     OBJ              0.041       0.041       0.042 
     AVGPROTEIN       0.536       0.545       0.563 
     STDPROTEIN       0.029       0.030       0.031 
     AVGENERGY        0.961       0.953       0.934 
     STDENERGY        0.057       0.056       0.055 
     SHADPROT         0.039       0.040       0.042 

 
Note: RAP gives the risk aversion parameter used 
    CORN gives the amount of corn used in the solution 
    SOYBEANS gives the amount of soybeans used in the solution 
    WHEAT gives the amount of wheat used in the solution 
    OBJ gives the objective function value 
    AVGPROTEIN gives the average amount of protein in the diet 
    STDPROTEIN gives the standard error of protein in the diet 
    AVGENERGY gives the average amount of energy in the diet 
    STDENERGY gives the standard error of energy in the diet 
 SHADPROT gives the shadow price on the protein requirement constraint 
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Table 14.19. Data on Uncertain Parameters in First SPR Example

 Value Under

Parameter State of Nature 1 State of Nature 2

Probability .6 .4 

Corn Yield in bu 100 105 

Wheat Yield in bu 40 38 

Corn Harvest Rate hours per bu .010 .015 

Wheat Harvest Rate hours per bu .030 .034 

Corn Price per bu 3.25 2.00 

Wheat Price per bu 5.00 6.00 

Harvest Time hours 122 143 

 
 
 
 

Table 14.20. Risk Free Formulation of First SPR Example

 Grow 
Corn 

Grow 
Wheat 

Income Harvest Corn Harvest 
Wheat 

RHS 

Objective   1     

Land 1 1    ≤ 100

Corn Yield 
Balance 

-yieldc   1  ≤ 0

Wheat Yield 
Balance 

 -yieldw   1 ≤ 0

Harvest Hours    +harvtimec +harvtimew ≤ harvavail

Income -100 -60 -1 +pricec +pricew = 0
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Table 14.21. Formulation of First SPR Example 
 
     State 1   State 2    

  Grow 
Corn 

Grow 
Wht. 

Inc. s1 Harv 
Corn  
s1 

Harv  
Wht 
 s1 

Inc. s2 Harv 
Corn  
s2 

Harv  
Wht 
 s2 

 RHS

 Objective   .6   .4    max

 Land 1 1       ≤ 100

S  
t  
a  
t  
e 
1 

Corn s1 -100   1     ≤ 0

Wheat s1  -40   1    ≤ 0

Harvest Hours s1    .010 .030    ≤ 122

Income s1 -100 -60 -1 3.25 5.00    = 0

S  
t  
a  
t  
e 
2 

Corn s2 -105      1  ≤ 0

Wheat s2  -38      1 ≤ 0

Harvest Hours s2       .015 .034 ≤ 143

Income s2 -100 -60    -1 2.00 6.00 = 0
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Equation Slack Shadow Price

Objective 16476  

Land 0 24.28

Corn s1 0 -1.95

Wheat s1 0 0.67

Harvest Hours s1 11.75 0

Income s1 0 -0.6

Corn s2 0 -3.00

Wheat s2 0 0.94

Harvest Hours s2 0 98.23

Income s2 0 -0.4

 
 
 
 

 
Variable 

Solution  
Value 

Marginal 
Cost 

Grow Corn 48.8 0

Grow Wheat 51.2 0

Income S1 18144 0

Harvest Corn s1 4876 0

Harvest Wheat s1 2049 0

Income S2 13972 0

Harvest Corn s2 5120 0

Harvest Wheat s2 1947 0
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Table 14.23. Second SPR Example Formulation (Partial Tableau)

 Corn Soy Wht Avg 
Cost

Pos 
Prot
Dev 
s1 

Neg 
Prot
Dev 
s1 

Pos 
Eng 
Dev 
s1 

Neg 
Eng 
Dev 
s1 

Cost 
s1 

Pos 
Cost
Dev
s1 

Negs 
Cost
Dev
s1 

Pos 
Prot 
Dev 
s2 

Neg 
Prot
Dev 
s2 

Pos 
Eng 
Dev 
s2 

Neg 
Eng 
Dev 
s2 

Cost 
s2 

Pos 
Cost
Dev
s2 

Neg
Cost
Dev
s2 

  

Objective    1      + +      + +   
Total Feed 1 1 1                = 1

Average Cost    1     -.25       -.25   = 0

Protein-s1 0.23 1.12 0.51  -1 1             = 0.6

Energy -s1 1.15 0.26 1.05    -1 1           = 0.9

Cost-s1 0.03 0.06 0.04  0.50 1.50 1.00 0.10 -1          = 0

Cost dev s1    -1     1 -1 1        = 0

Protein-s2 0.17 1.08 0.59         -1 1      = 0.6

Energy -s2 1.10 0.31 0.95           -1 1    = 0.9

Cost-s2 .03 .06 .04         0.50 1.50 1.00 0.10 -1   = 0

Cost dev s2    -1            1 -1 1 = 0
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Table 14.24. Second SPR Example Risk Neutral Solution

  
Slack 

Shadow 
Price 

  
Slack 

Shadow 
Price 

Objective 0.067  Corn Purchase 0.283 0

Total Feed 0 -0.14 Soybean Purchase 0.362 0

Average Cost 0.00 1. Wheat Purchase 0.355 0

Protein-s1 0 0.125 Average Cost 0.067 0

Energy -s1 0 0.025 Pos Protein Dev s1 0.052 0

Cost-s1 0 252.66 Neg Protein Dev s1 0. 0.50

Cost dev s1 0 0.00 Pos Energyn Dev s1 0.00 0

Protein-s2 0 0.125 Neg Energy Dev s1 0.108 0

Energy -s2 0 0.025 Cost - s1 0.081 0

Cost-s2 0 0.25 Pos Cost Dev - s1 0.014 0

Cost dev s2 0 0 Neg Cost Dev - s1 0.00 0

Protein-s3 0 -.366 Pos Protein Dev s2 0.049 0

Energy -s3 0 0.025 Neg Protein Dev s2 0.000 0.50

Cost-s3 0 0.25 Pos Energyn Dev s2 0. 0.275

Cost dev s3 0 0 Neg Energyn Dev s2 0.140 0

Protein-s4 0 .08 Cost - s2 0.083 0

Energy -s4 0 .025 Pos Cost Dev - s2 .016 0

Cost-s4 0 0.25 Neg Cost Dev - s2 0.00 0

Cost dev s4 0 0.00 Pos Protein Dev s3 0. 0.491

   Neg Protein Dev s3 0. 0.009

   Pos Energy Dev s3  0.275

   Neg Energy Dev s3 0.080 0

   Cost - s3 0.052 0

   Pos Cost Dev - s3 0.00 0

   Neg Cost Dev - s3 0.014 0

   Pos Protein Dev s4 0. 0.205

   Neg Protein Dev s4 0. 0.295

   Pos Energyn Dev s4 0. 0.275

   Neg Energy Dev s4 0.067 0

   Cost - s4 0.051 0

   Pos Cost Dev - s4 0. 0

   Neg Cost Dev - s4 0.016 0
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Aversion

RAP     0 0.1 0.2 0.3 0.4 0.500 0.600

        
Corn    0.283 0.249 0.245 0.244 0.288 0.296 0.297

Soybeans 0.362 0.330 0.327 0.326 0.340 0.342 0.342

Wheat   0.355 0.422 0.428 0.430 0.372 0.363 0.361

Avgcost 0.067 0.067 0.067 0.067 0.071 0.071 0.071

Cost s1  0.081 0.074 0.073 0.073 0.071 0.071 0.071

Cost s2  0.083 0.080 0.080 0.080 0.074 0.073 0.073

Cost s3  0.052 0.066 0.067 0.068 0.071 0.071 0.071

Cost s4  0.051 0.048 0.048 0.048 0.067 0.070 0.071

Std Error 0.015 0.012 0.012 0.012 0.002 0.001 0.001

 
         RAP is the risk aversion parameter. 
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Table 14.26. Example Tableau for Third SPR Problem 
  Average 

Ending Net 
Worth 

Period 1 Period 2 Stage 3   

       Period 2 State 1 Period 2 State 2   
     State 1 State 2       
         Period 3 State A  Period 3  State B Period 3  State A Period 3  State B   
   Sell Keep Sell Keep Sell Keep Sell End Worth Sell End 

Worth
Sell End 

Worth
Sell End 

Worth   
                   
 Objective 1               max  

 Starting Stock  1  1             ≤ 100 

 Avg End Worth 1         -0.42  -0.28  -0.21  -0.09 = 0 

 Stock Kept pd 1 to 2 s1   -1 1 1           ≤ 0 

 Stock Kept pd 1 to 2 s2   -1   1 1         ≤ 0  
P2 
S1 

Stock Kept pd 2 to 3 
s1-sA     -1   1        ≤ 0  

 Ending Worth s1-sA  2.1412   2.332    2.18  -1       = 0  

 Stock Kept pd 2 to 3 
s1-sB     -1     1      ≤ 0  

 Ending Worth s1-sB  2.1008   2.288      2.44 -1     = 0  

P2 
S2 

 

Stock Kept pd 2 to 3 
s2-sA       -1     1    ≤ 0  

 Ending Worth s2-sA  2.1828    2.193      2.18 -1   = 0  

 Stock Kept pd 2 to 3 
s2-sB       -1       1  ≤ 0  

 Ending Worth s2-sB  2.1012    2.111        2.44 -1 = 0  
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Table 14.27. Solution for Third SPR Example 
Variable  Value Reduced Cost Variable Slack Shadow Price

Average Ending Net Worth  229.748 0 Objective 229.748  
Sell In Period 1 0 -0.162 Starting Stock 0 2.297

Keep From Period 1 to 2 100 0 Avg End Worth 0 1

Sell In Period 2 Under State 1 100 0 Stock Kept pd 1 to 2 s1 0 1.62

Keep From Period 2 to 3 Under State 1 0 -0.021 Stock Kept pd 1 to 2 s1 0 0.677

Sell In Period 2 Under State 2 0 -0.027 Stock Kept pd 2 to 3 s1-s1 0 0.916

Keep From Period 2 to 3 Under State 2 100 0 Ending Worth s1-s1 0 -0.42

Sell in Period 3 Under State 1 -- State A 0 0 Stock Kept pd 2 to 3 s1-s2 0 0.683

Ending Worth Under State 1 -- State A 233.2 0 Ending Worth s1-s2 0 -0.28

Sell In Period 3 Under State 1 -- State B 0 0 Stock Kept pd 2 to 3 s2-s1 0 0.458

Ending Worth Under State 1 -- State B 228.8 0 Ending Worth s2-s1 0 -0.21

Sell In Period 3 Under State 2 -- State A 100 0 Stock Kept pd 2 to 3 s2-s2 0 0.22

Ending Worth Under State 2 -- State A 218 0 Ending Worth s2-s2 0 -0.09

Sell In Period 3 Under State 2 -- State B 100 0    
Ending Worth Under State 2 -- State B 244 0    
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14.1. E-V Model Efficient Frontier
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Figure 14.2. E-V and MOTAD Efficient Frontiers
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