Conditional Expectations (CE)

- Regression analyses are often used to establish possible causal relationships between some variables of interests.

- Some commonly used terms:
 - Explained variable, dependent variable, regressand, response variable (usually denoted by y)
 - Explanatory variables, independent variables, regressors, control variables, or covariates (usually denoted by $\mathbf{x} = (x_1, \ldots, x_K)$)

- Conditional Expectation: $E(y|x_1, \ldots, x_K) = \mu(x_1, \ldots, x_K)$. Note that the CE of y here is a function of (x_1, \ldots, x_K).

- Partial effects: how y changes when element of \mathbf{x} change. Assuming that $\mu(\cdot)$ is differentiable and x_j is continuous, the partial effect of x_j is captured by the partial derivative $\partial \mu(\mathbf{x}) / \partial x_j$. If x_j is a discrete variable, partial effects are computed by comparing $E(y|\mathbf{x})$ at different settings of x_j.

Example:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2^2 + u$$

$$E(y|\mathbf{x}) \equiv \mu(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2^2$$

$$\partial \mu(\mathbf{x}) / \partial x_1 = \beta_1$$

$$\partial \mu(\mathbf{x}) / \partial x_2 = 2\beta_2 x_2.$$
• The error term: $E(u|x) = 0$. This implies

- $E(u) = 0$ (by law of iterated expectations)
- u is uncorrelated with any function of x. Note that this is stronger than saying u is uncorrelated with x. The latter implies that $\text{cov}(u, x_j) = 0$, but does not rule out cases like $\text{cov}(u, f(x_j)) \neq 0$, where $f(x_j)$ is a non-linear function of x_j. On the other hand, $E(u|x) = 0$ is weaker than the independence between u and x, which implies $E(u|x) = E(u)$.

• Law of Iterated Expectations (LIE): Let $x = f(w)$, then

$$E(y|x) = E[E(y|x)|w]$$
$$E(y|x) = E[E(y|w)|x]$$

The smaller information set always dominates. (As a function of w, x has a smaller information set).

- $E(y|x) = E[E(y|x, z)|x]$
- Suppose $E(y|x) = g[f(x)]$, then $E[y,f(x)] = E[y|x] = g[f(x)]$
- $E(y) = E[E(y|x)] = E[\mu(x)]$. Let $p(y|x), p(x)$ and $p(x,y)$ be the conditional density, the marginal density (for x) and the joint density respectively. Then

$$\mu(x) = E(y|x) = \int yp(y|x) dy$$
$$E[E(y|x)] = \int \int yp(y|x) dyp(x) dx$$
$$= \int \int yp(x,y) dydx$$
$$= E(y).$$

E.g., suppose x is discrete with $\text{Prob.}(x = 0) = 0.4$ and $\text{Prob.}(x = 1) = 0.6;$
\[E(y|x = 0) = 1 \] and \[E(y|x = 1) = 2 \]. We then have

\[
E(y) = 1 \times 0.4 + 2 \times 0.6 \\
= E(y|x = 0) \text{ Prob.}(x = 0) + E(y|x = 1) \text{ Prob.}(x = 1) \\
= E[E(y|x)].
\]

For discrete \(x \), the CE is essentially a weighted average.

- Conditional Jensen’s Inequality: If \(c: \mathcal{R} \to \mathcal{R} \) is a convex function defined on \(R \) and \(E[|y|] < \infty \), then

\[
c[E(y|x)] \leq E[c(y)|x].
\]

Exercise: Show that this leads to unconditional Jensen’s inequality immediately.

- **Conditional variance**

 - Definition: \(\text{Var}(y|x) \equiv \sigma^2(x) = E[(y - E(y|x))^2|x] = E[y^2|x] - [E[y|x]]^2. \)

 This is because

\[
E\left\{ y^2 - 2yE[y|x] + (E[y|x])^2 \right\} |x]
\]

\[
= E[y^2|x] - 2E[y|x]E[y|x|x] + E[(E[y|x])^2|x] \\
= E[y^2|x] - 2[E[y|x]]^2 + [E[y|x]]^2.
\]

- \(\text{Var}[a(x)y + b(x)|x] = [a(x)]^2 \text{Var}(y|x). \)

- \(\text{Var}(y) = E[\text{Var}(y|x)] + \text{Var}[E(y|x)] = E[\sigma^2(x)] + \text{Var}(\mu(x)). \)

\[
\text{Var}(y) = E[(y - E(y))^2] \\
= E[(y - E(y|x) + E(y|x) - E(y))^2] \\
= E[(y - E(y|x))^2] + 2E[y - E(y|x)](E[y|x] - E(y)) \\
+ E[(E(y|x) - E(y))^2].
\]
The middle term is zero by LIE. Also by LIE,

\[
E \left[(y - E(y|x))^2 \right] = E \left\{ E \left[(y - E(y|x))^2 \right] \right\} = E \left[\text{Var}(y|x) \right]
\]
\[
E \left[(E(y|x) - E(y))^2 \right] = E \left[(E(y|x) - E(E(y|x)))^2 \right] = E \left[(\mu(x) - E(\mu(x)))^2 \right] = \text{Var}(\mu(x)).
\]

\[\text{Var}(y|x) = E \left[\text{Var}(y|x, z)|x \right] + \text{Var}(E(y|x, z)|x)\] (again, small information set dominates)

By LIE, we then have

\[
E[\text{Var}(y|x)] = E[E[\text{Var}(y|x, z)|x] + E[\text{Var}(E(y|x, z)|x)]
\]
\[= E[\text{Var}(y|x, z)] + E[\text{Var}(E(y|x, z)|x)] \geq E[\text{Var}(y|x, z)]
\]

Note that

\[
\text{Var}(y) = E[\text{Var}(y|x)] + \text{Var}(E(y|x))
\]
\[= E[\text{Var}(y|x, z)] + \text{Var}(E(y|x, z)).
\]

It follows that

\[
E[\text{Var}(y|x)] \geq E[\text{Var}(y|x, z)] \iff \text{Var}(E(y|x)) \leq \text{Var}(E(y|x, z)).
\]

Define the mean squared error as \(\text{MSE}(y; \mu) = E \left[(y - \mu(x))^2 \right]\). This result suggests that

\[\text{MSE}[y; E(y|x)] \geq \text{MSE}[y; E(y|x, z)].\]

Namely, one can improve prediction in terms of the MSE by conditioning on more
variables. (This explains why R^2 always improves with the number of covariates.)

- Linear projection (OLS)

 - Define $L(y|x) = x\beta$ and $y = L(y|x) + u$, where β is the OLS coefficient of y on x. If $E(x'x)$ is positive-definite, then β is unique. Then $E(x'u) = 0$. (orthogonality condition)

 - $L\left(\sum_{j=1}^{G} a_j y_j | x \right) = \sum_{j=1}^{G} a_j L(y_j | x)$, where a_1, \ldots, a_G are constants. (Linear projection is a linear operator)

 - Law of integrated projections: $L(y|x) = L\left[L(y|x, z) | x \right]$. (Direct application of LIE. Again, small information set dominates.)

 - Suppose $L(y|x, z) = x\beta + z\gamma$. Let $r = x - L(x|z)$ and $v = y - L(y|z)$. Then

 $$L(v|r) = r\beta, \quad L(y|r) = r\beta$$

Basic Asymptotic Theory

- Convergence in probability. A sequence of random variables $\{x_N : N = 1, 2, \ldots\}$ converges in probability to the constant a if for all $\varepsilon > 0$

 $$P[|x_N - a| > \varepsilon] \to 0 \text{ as } N \to \infty.$$

 We write $x_N \overset{p}{\to} a$ or $\text{plim} x_N = a$. If $a = 0$, we write $x_N = o_p(1)$.

- A sequence of random variables $\{x_N\}$ is bounded in probability if and only if for every $\varepsilon > 0$, there exists a $b_\varepsilon < \infty$ and an integer N_ε such that

 $$P[|x_N| \geq b_\varepsilon] < \varepsilon \text{ for all } N \geq N_\varepsilon.$$
We write $x_N = O_p (1)$.

- Slutsky’s theorem. Let $g : \mathcal{R}^K \to \mathcal{R}^J$ be a function continuous at some point $c \in \mathcal{R}^K$. Let $\{x_N : N = 1, 2, \ldots \}$ be sequence of $K \times 1$ random vectors such that $x_N \overset{p}{\to} c$. Then $g (x_N) \to g (c)$ as $N \to \infty$. Namely,

$$\text{plim} \ g (x_N) = g (\text{plim} x_N),$$

if $g (\cdot)$ is continuous at $\text{plim} x_N$.

- Convergence in distribution. A sequence of random variables x_N converges in distribution to the continuous random variable x if and only if

$$F_N (\zeta) \to F (\zeta) \quad \text{as} \quad N \to \infty \quad \text{for all} \quad \zeta \in \mathcal{R}$$

where F_N and F are the CDF for x_N and x respectively. We write $x_N \overset{d}{\to} x$.

- If $x \sim N (\mu, \sigma^2)$ and $x_N \overset{d}{\to} x$, then $x_N \overset{d}{\to} N (\mu, \sigma^2)$ or $x_N \sim N (\mu, \sigma^2)$. We say x_N is asymptotically normal.

- Continuous mapping theorem. Let $\{x_N\}$ be a sequence of $K \times 1$ random vectors such that $x_N \overset{d}{\to} x$. If $g : \mathcal{R}^K \to \mathcal{R}^J$ is a continuous functions, then $g (x_N) \overset{d}{\to} g (x)$.

- If $z_n \overset{d}{\to} z$ and $x_n - z_n \overset{p}{\to} 0$, then $x_n \overset{d}{\to} z$.

- Weak Law of Large Numbers (WLLN). Let $\{w_i\}$ be a sequence of iid random variables such that $E (|w_i|) < \infty$. Then $N^{-1} \sum w_i \overset{p}{\to} \mu_w$, where $\mu_w = E w_i$.

- Central Limit Theorem (CLT). Let $\{w_i\}$ be a sequence of iid random vector such that $E (w_i^2) < \infty$ and $E (w_i) = 0$. Then $N^{-1} \sum w_i \overset{d}{\to} N (0, B)$, where $B = \text{Var} (w_i) = E (w_i w_i')$.

- Consistency. If $\hat{\theta}_N \overset{p}{\to} \theta$ for any value of θ, then $\hat{\theta}_N$ is a consistent estimator of θ.

6
- Asymptotic normality. \(\sqrt{N} \left(\hat{\theta}_N - \theta_N \right) \overset{d}{\rightarrow} N(0, V) \), where \(V \) is positive semidefinite, then \(\hat{\theta}_N \) is asymptotically normal and \(V \) is the asymptotic variance of \(\sqrt{N} \left(\hat{\theta}_N - \theta_N \right) \).

If \(V \) is positive definite and \(\hat{V}_N \overset{p}{\rightarrow} V \), then the asymptotic standard error of \(\hat{\theta}_{Nj} \) is \((\hat{v}_{Njj}/N)^{1/2}\), where \(\hat{v}_{Njj} \) is the \(j \)th diagonal of \(\hat{V}_N \).

- Let \(\sqrt{N} \left(\hat{\theta}_N - \theta_N \right) \overset{d}{\rightarrow} N(0, V) \) and \(\sqrt{N} \left(\tilde{\theta}_N - \theta_N \right) \overset{d}{\rightarrow} N(0, D) \). If \(D - V \) is positive definite, then \(\hat{\theta}_N \) is asymptotically efficient relative to \(\tilde{\theta}_N \); if \(\sqrt{N} \left(\hat{\theta}_N - \tilde{\theta}_N \right) \overset{p}{\rightarrow} 0 \), then \(\hat{\theta}_N \) and \(\tilde{\theta}_N \) are \(\sqrt{N} \)-equivalent.

- Let \(\hat{\theta}_N = \left[\hat{\theta}_{N1}, \hat{\theta}_{N2} \right] \) with asymptotic variances \(V_1 \) and \(V_2 \) respectively. If

\[
V = \begin{bmatrix}
V_1 & 0 \\
0 & V_2
\end{bmatrix},
\]

then \(\hat{\theta}_{N1} \) and \(\hat{\theta}_{N2} \) are asymptotically independent.